2014-2015学年陕西省安康市旬阳县桐木中学八年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是()A.a3•a2=a6B.y3÷y=y3C.(m2n)3=m6n3D.(x2)3=x52.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是()A.B.C.D.3.下列式子的变形,不是因式分解的有()①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y.A.1个B.2个C.3个D.4个4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为()A.3×1012千米B.9×1015千米C.9×1035千米D.9×1012千米5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85°B.80°C.75°D.70°6.如果单项式﹣x2a﹣3y2与x3ya+2b﹣7的和仍为单项式,那么它们的乘积为()A.﹣x6y4B.﹣x3y2C.﹣x6y4D.x6y47.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为()A.aB.﹣3C.9a3b2D.3a8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能()A.被20整除B.被7整除C.被21整除D.被n+4整除9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是()A.(6xy﹣6xa﹣4by+4ab)cm2B.(6xy+6xa+4by﹣4ab)cm2C.(6xy﹣6xb﹣4ay+4ab)cm2D.(6xy+6xb+4ay﹣4ab10.计算(2+1)(22+1)(24+1)…(232+1)的结果为()A.235+2B.264+1C.264﹣1D.232﹣1二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是.12.计算(15y3﹣9y2﹣3y)÷(﹣3y)=.13.已知2a+3b+4=0,则﹣4a﹣6b的值为.14.若4x2+mx+9是一个完全平方式,则实数m的值是.15.如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则m的值是.16.一个等腰三角形的周长为16,一边长是6,则它的腰长为.17.若3x=m,9y=n,x,y为正整数,则32x+6y等于.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).三、解答题(共5小题,计46分.解答应写出过程)19.把下列各式分解因式:(1)x2﹣(y+2)2;(2)﹣20x3y+x4+100x2y2.20.如图,在Rt△ABC中,∠ABC=90°,在边AB上取一点D,使得DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F,求证:FC=AB+DB.21.先化简,再求值:(1)b(a+b)+(a+2b)(2a﹣b)﹣4ab,其中a=﹣3,b=4;(2)[(x+3y)(x﹣3y)+(x+3y)2]÷(﹣4x),其中x=1,y=.22.已知“两点之间,线段最短”,我们经常利用它来解决两线段和的最小值问题.(1)实践运用唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由.(2)拓展延伸如图2,点P,Q是△ABC的边AB、AC上的两个定点,请同学们在BC上找一点R,使得△PQR的周长最短(要求:尺规作图,不写作图过程保留作图痕迹).23.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)直接写出图2中所表示的数学等式;(2)写出图3中所表示的数学等式,并利用所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图4中给出了若干个边长为a和边长为b的小正方形纸片,若干个长为a、宽为b的长方形纸片,请先写出数学等式:(2a+b)(a+2b)=,再利用所给的纸片拼出一个几何图形,验证该公式.2014-2015学年陕西省安康市旬阳县桐木中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是()A.a3•a2=a6B.y3÷y=y3C.(m2n)3=m6n3D.(x2)3=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据幂的乘方,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、底数不变指数相减,故B错误;C、积的乘方等每个因式分别乘方,再把所得的幂相乘,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.点评:本题考查了同底数幂的除法,利用法则计算是解题关键.2.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义直接判断得出即可.解答:解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了轴对称图形的性质,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.下列式子的变形,不是因式分解的有()①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y.A.1个B.2个C.3个D.4个考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.解答:解:①右边不是整式积的形式,不是因式分解;②右边不是整式积的形式,不是因式分解;③是因式分解;④右边的式子还有可以分解的多项式,不是因式分解;综上可得不是因式分解的是:①②④,共3个.故选C.点评:本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为()A.3×1012千米B.9×1015千米C.9×1035千米D.9×1012千米考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3×105×3×107用科学记数法表示为:9×1012.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85°B.80°C.75°D.70°考点:三角形内角和定理.分析:先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.解答:解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.点评:本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如果单项式﹣x2a﹣3y2与x3ya+2b﹣7的和仍为单项式,那么它们的乘积为()A.﹣x6y4B.﹣x3y2C.﹣x6y4D.x6y4考点:单项式乘单项式;合并同类项.分析:根据合并同类项法则得出a,b的值,进而利用单项式乘以单项式运算法则求出即可.解答:解:∵单项式﹣x2a﹣3y2与x3ya+2b﹣7的和仍为单项式,∴,解得:,故单项式﹣x3y2与x3y2的乘积为:﹣x6y4.故选:C.点评:此题主要考查了单项式乘以单项式以及合并同类项法则,得出a,b的值是解题关键.7.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为()A.aB.﹣3C.9a3b2D.3a考点:公因式;整式的加减.分析:根据合并同类项,可化简整式,根据公因式是每項都含有的因式,可得答案.解答:解:A﹣B=9a2+3a,A﹣B的值与﹣9a3b2的公因式为3a,故选:D.点评:本题考查了公因式,先合并同类项,再判断公因式.8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能()A.被20整除B.被7整除C.被21整除D.被n+4整除考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:(n+7)2﹣(n﹣3)2=[(n+7)﹣(n﹣3)][(n+7)+(n﹣3)]=10(2n+4)=20(n+2),故多项式(n+7)2﹣(n﹣3)2的值都能被20整除.故选:A.点评:此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是()A.(6xy﹣6xa﹣4by+4ab)cm2B.(6xy+6xa+4by﹣4ab)cm2C.(6xy﹣6xb﹣4ay+4ab)cm2D.(6xy+6xb+4ay﹣4ab考点:整式的混合运算.专题:应用题.分析::由长方形面积减去阴影部分面积求出空白区域面积即可.解答:解:根据题意得:3x•2y﹣(3x﹣2a)(2y﹣2a)=(6xy﹣6xa﹣4by+4ab)cm2.故选A点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.计算(2+1)(22+1)(24+1)…(232+1)的结果为()A.235+2B.264+1C.264﹣1D.232﹣1考点:平方差公式.分析:把前面的1变为(2﹣1),再依次运用平方差公式进行计算即可.解答:解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1),=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1),=(24﹣1)(24+1)(28+1)(216+1)(232+1),=(28﹣1)(28+1)(216+1)(232+1),=(216﹣1)(216+1)(232+1),=(232﹣1)(232+1),=264﹣1故选:C.点评:本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是x2y.考点:单项式乘单项式.分析:利用单项式的乘除运算法则,进而求出即可.解答:解:∵□×6xy=3x3y2,∴□=3x3y2÷6xy