福建省泉州市永春八中2014-2015学年八年级上学期第二次月考数学试卷一、选择题(每题3分,共21分)1.(3分)4的平方根是()A.2B.﹣2C.±2D.±42.(3分)下列计算正确的是()A.x8•x2=x4B.x3•x2=x6C.(x3)2=x5D.x2+x2=2x23.(3分)用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”应先假设:在一个三角形中()A.至多有一个内角大于或等于60°B.至多有一个内角大于60°C.每一个内角小于或等于60°D.每一个内角大于60°4.(3分)我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b25.(3分)根据下列条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=3,BC=4,∠A=30°C.∠A=60°,∠B=45°,AB=6D.∠C=90°,AB=66.(3分)已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cmB.16cmC.16cm或20cmD.20cm7.(3分)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形二、填空题(每题4分,共40分)8.(4分)计算:=.9.(4分)命题“等边对等角”的逆命题是“”.10.(4分)因式分解:5a﹣10b=.11.(4分)计算:(﹣2x)2=.12.(4分)在字母ahabauydeac中,a出现的频数是.13.(4分)适合下列条件的△ABC中,能确定是直角三角形的有(只填代号)①∠A+∠B=∠C②∠A=35°,∠B=55°③a=1,b=2,c=3④a=3,b=4,c=5.14.(4分)某校2015届九年级的一次数学测验中,成绩在80~84分之间的同学有84人,在频率分布表中的频率为0.35,则全校2015届九年级共有学生人.15.(4分)下列命题:①对顶角相等;②同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等.其中是真命题的有.(填命题的代码)16.(4分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.17.(4分)如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).三、解答题(本题共89分)18.(12分)计算:(1)(m+1)(m﹣1)(2)(4x2﹣3xy)÷2x.19.(12分)因式分解:(1)x2﹣4(2)3a2+18a+27.20.(8分)先化简,再求值:2a(a+b)﹣(a+b)2,其中a=5,b=﹣2.21.(8分)如图,在△ABC中,AB=AC,BD=CD,求证:△ABD≌△ACD.22.(8分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?23.(8分)某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为;(2)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;(3)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?24.(8分)如图,在长方形ABCD中,CD=6,AD=8.将长方形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.求EF的长.25.(12分)阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第步(该步的序号)开始出现错误,错的原因为;(2)请你将正确的解答过程写下来.26.(13分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.福建省泉州市永春八中2014-2015学年八年级上学期第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共21分)1.(3分)4的平方根是()A.2B.﹣2C.±2D.±4考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4∴4的平方根是:±2.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)下列计算正确的是()A.x8•x2=x4B.x3•x2=x6C.(x3)2=x5D.x2+x2=2x2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、合并同类项的运算,然后选择正确选项.解答:解:A、x8•x2=x10,原式计算错误,故本选项错误;B、x3•x2=x5,原式计算错误,故本选项错误;C、(x3)2=x6,原式计算错误,故本选项错误;D、x2+x2=2x2,原式计算正确,故本选项正确.故选D.点评:本题考查了合并同类项、幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.3.(3分)用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”应先假设:在一个三角形中()A.至多有一个内角大于或等于60°B.至多有一个内角大于60°C.每一个内角小于或等于60°D.每一个内角大于60°考点:反证法.分析:根据反证法的证明方法,先假设命题的结论不成立,即假设在一个三角形中,每个内角都大于60°.解答:解:用反证法证明:在一个三角形中,至少有一个内角小于或等于60°,可以假设在一个三角形中,每个内角都大于60°.故选:D.点评:本题考查了反证法:反证法的一般步骤是:先假设命题的结论不成立;再从这个假设出发,经过推理论证,得出矛盾;最后由矛盾判定假设不正确,从而肯定原命题的结论正确.4.(3分)我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2考点:完全平方公式的几何背景.分析:根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.解答:解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选C.点评:本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.5.(3分)根据下列条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=3,BC=4,∠A=30°C.∠A=60°,∠B=45°,AB=6D.∠C=90°,AB=6考点:全等三角形的判定.分析:判断其是否为三角形,即两边之和大于第三边,之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形则并不是唯一存在,可能有多种情况存在.解答:解:A、∵AC与BC两边之差大于第三边,∴A不能作出三角形;B、∠A并不是AB,BC的夹角,故可画出多个三角形;C、两角夹一边,形状固定,可作唯一三角形;D、两个锐角也不确定,也可画出多个三角形.故选C.点评:本题考查了全等三角形全等的有关知识,要掌握三角形的判定方法,只有符合全等判定方法的条件画出的三角形才都是一样的,也就是说是唯一的.本问题界定的是唯一三角形,要注意要求.6.(3分)已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cmB.16cmC.16cm或20cmD.20cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:题目给出等腰三角形有两条边长为8cm和4cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选D.点评:本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.(3分)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点:全等图形.分析:综合运用判定方法判断.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.点评:本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.二、填空题(每题4分,共40分)8.(4分)计算:=4.考点:二次根式的性质与化简.分析:运用开平方定义化简.解答:解:原式==4.点评:主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式.②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.9.(4分)命题“等边对等角”的逆命题是“等角对等边”.考点:命题与定理.分析:交换命题的题设和结论即可得到该命题的逆命题;解答:解:“等边对等角”的逆命题是等角对等边;故答案为:等角对等边.点评:本题考查了命题与定理的知识,解题的关键是分清原命题的题设和结论.10.(4分)因式分解:5a﹣10b=5(a﹣2b).考点:因式分解-提公因式法.分析:提取公因式5即可得解.解答:解:5a﹣10b=5(a﹣2b).故答案为:5(a﹣2b).点评:本题考查了提公因式法分解因式,比较简单,准确确定出公因式是解题的关键.11.(4分)计算:(﹣2x)2=4x2.考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2x)2=4x2.故答案为:4x2.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.12.(4分)在字母ahabauydeac中,a出现的频数是4.考点:频数与频率.分析:找出字母ahabauydeac中字母a共出现的次数,即可得解.解答:解:在字母a