【解析版】永州市道县五中2014-2015年八年级下期中数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

湖南省永州市道县五中2014-2015学年八年级下学期期中数学试卷一、精心选一选:(将正确答案填在下面的表格中)1.下列图形中是中心对称图形的是()A.①②④B.②③④C.①③④D.①②③2.下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等3.点M(﹣5,y)向下平移5个单位所得的像是关于x轴对称,则y的值是()A.﹣5B.5C.D.4.横坐标为负,纵坐标为零的点在()A.第一象限B.第二象限C.x轴的负半轴D.y轴的负半轴5.在▱ABCD中,BD、AC是对角线,下列结论不正确的是()A.当AB=BC时,▱ABCD是菱形B.当∠ABC=90°时,▱ABCD是矩形C.当AC⊥BD时,▱ABCD是菱形D.当AC=BD时,▱ABCD是正方形6.如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A.6B.3C.D.7.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm8.矩形、菱形、正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角9.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,2310.在x轴上,且到原点的距离为2的点的坐标是()A.(2,0)B.(﹣2,0)C.(2,0)或(﹣2,0)D.(0,2)二、细心填一填:11.在▱ABCD中,添加条件__________可得四边形ABCD是菱形.12.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是__________.13.一个多边形每个外角都是30°,它的内角和是__________.14.顺次连结任意四边形各边中点所得到的四边形一定是__________.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为__________cm2.16.点B(3a﹣9,a+1)在第二象限,则a的取值范围为__________.17.已知点A(a,﹣3),B(4,b)关于y轴对称,则a﹣b=__________.18.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为__________.19.已知线段MN平行于y轴,且MN的长度为3,若M(2,﹣2),那么点N的坐标是__________.20.在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有__________个.三、耐心做一做(60分)21.已知:▱ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5cm,求这个平行四边形各边的长.22.已知:如图,点E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:∠CDF=∠ABE.23.如图,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HC=HF.24.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.25.矩形ABCD的对角线相交于点O,DE∥AC,CE∥DB,CE、DE交于点E,请问:四边形DOCE是什么四边形?请说明理由.26.如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.27.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?湖南省永州市道县五中2014-2015学年八年级下学期期中数学试卷一、精心选一选:(将正确答案填在下面的表格中,3×10分)1.下列图形中是中心对称图形的是()A.①②④B.②③④C.①③④D.①②③考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,①③④都符合;不是中心对称图形的只有②.故选:C.点评:本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等考点:平行四边形的判定.分析:由平行四边形的判定方法得出A、C、D正确,B不正确;即可得出结论.解答:解:∵两组对边分别平行的四边形是平行四边形,∴A正确;∵一组对边平行,另一组对边相等的四边形是等腰梯形,不一定是平行四边形,∴B不正确;∵两组对边分别相等的四边形是平行四边形,∴C正确;∵一组对边平行且相等的四边形是平行四边形,∴D正确;故选:B.点评:本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.3.点M(﹣5,y)向下平移5个单位所得的像是关于x轴对称,则y的值是()A.﹣5B.5C.D.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:此题平移规律是(x,y﹣5),因为点M(﹣5,y)向下平移5个单位的像关于x轴对称,所以y的值是(y﹣y+5)÷2=.故选C.点评:本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.横坐标为负,纵坐标为零的点在()A.第一象限B.第二象限C.x轴的负半轴D.y轴的负半轴考点:点的坐标.分析:根据x轴上点的纵坐标为零,横坐标小于零在x轴的负半轴,可得答案.解答:解:横坐标为负,纵坐标为零的点在x轴的负半轴上.故选:C.点评:本题考查了点的坐标,x轴的负半轴上的点的横坐标小于零,纵坐标等于零;x轴的正半轴上的点的横坐标大于零,纵坐标等于零.5.在▱ABCD中,BD、AC是对角线,下列结论不正确的是()A.当AB=BC时,▱ABCD是菱形B.当∠ABC=90°时,▱ABCD是矩形C.当AC⊥BD时,▱ABCD是菱形D.当AC=BD时,▱ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.分析:分别利用矩形、菱形、正方形的判定方法判断得出即可.解答:解:A、当AB=BC时,▱ABCD是菱形,利用邻边相等的平行四边形是菱形,故此选项正确,不合题意;B、当∠ABC=90°时,▱ABCD是矩形,利用一个角是直角的平行四边形是矩形,故此选项正确,不合题意;C、当AC⊥BD时,▱ABCD是菱形,利用对角线互相垂直的平行四边形是菱形,故此选项正确,不合题意;,D、当AC=BD时,▱ABCD是矩形,故此选项错误,符合题意.故选:D.点评:此题主要考查了矩形、菱形、正方形的判定方法,正确掌握判定定理是解题关键.6.如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A.6B.3C.D.考点:翻折变换(折叠问题);含30度角的直角三角形;勾股定理.专题:计算题;压轴题.分析:易得∠ABC=60°,∠A=30°.根据折叠的性质∠CBE=∠D=30°.在△BCE和△DCE中运用三角函数求解.解答:解:∵∠ACB=90°,BC=3,AB=6,∴sinA=BC:AB=1:2,∴∠A=30°,∠CBA=60°.根据折叠的性质知,∠CBE=∠EBA=∠CBA=30°,∴CE=BCtan30°=,∴DE=2CE=2.故选C.点评:本题考查了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,锐角三角函数的概念求解.7.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm考点:平行四边形的性质.分析:由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.解答:解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选A.点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.8.矩形、菱形、正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角考点:菱形的性质;矩形的性质;正方形的性质.分析:矩形、菱形、正方形都是特殊的平行四边形,共有的性质就是平行四边形的性质.解答:解:矩形、菱形、正方形共有的性质是对角线互相平分.故选B.点评:本题考查矩形、菱形、正方形的性质,熟记这些性质才能熟练做题.9.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.解答:解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.点评:此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.10.在x轴上,且到原点的距离为2的点的坐标是()A.(2,0)B.(﹣2,0)C.(2,0)或(﹣2,0)D.(0,2)考点:两点间的距离公式.分析:找到纵坐标为0,且横坐标为2的绝对值的坐标即可.解答:解:∵点在x轴上,∴点的纵坐标为0,∵点到原点的距离为2,∴点的横坐标为±2,∴所求的坐标是(2,0)或(﹣2,0),故选C.点评:本题涉及到的知识点为:x轴上的点的纵坐标为0;绝对值等于正数的数有2个.二、细心填一填:(3×10分)11.在▱ABCD中,添加条件AB=BC可得四边形ABCD是菱形.考点:菱形的判定.专题:证明题;开放型.分析:根据菱形的判定:有一组邻边相等的平行四边形是菱形,条件条件AB=BC即可.解答:解:AB=BC,理由是:∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形.故答案为:AB=BC.点评:本题考查了菱形的判定定理的应用,此题是一个开放性的题目,答案不唯一,再如:AD=DC等.12.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是6.考点:三角形中位线定理.分析:利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.解答:解:∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×12=6.故答案是:6.点评:本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF的周长是△ABC的周长的一半是关键.13.一个多边形每个外角都是30°,它的内角和是1800°.考点:多边形内角

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功