2016年人教版九年级数学上册同步测试:21.3实际问题与一元二次方程一.选一选1.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825B.x+4.25%x=33825C.3×4.25%x=33825D.3(x+4.25x)=338252.若一元二次方程x2﹣4x﹣5=0的根是直角三角形斜边上的中线长,则这个直角三角形的斜边长为()A.2B.10C.2或10D.53.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为()A.10B.12C.14D.175.由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5B.12(1﹣a%)2=5C.12(1﹣2a%)=5D.12(1﹣a2%)=56.某单位要组织一次篮球联赛,赛制为单循环形式从一块长30cm,宽12cm的长方形薄铁皮的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为()A.1cmB.2cmC.3cmD.4cm8.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32B.126C.135D.144二.填一填9.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加行列.10.在实数范围内定义运算“※”,其法则为a※b=a2﹣b2,那么方程(4※3)※x=24的解为.11.参加一次聚会的每两人都握了一次手,所有人共握手10次,有人参加聚会.12.用一条长为40cm的绳子(填“能”或“不能”)围成一个面积为10cm2的长方形?13.某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要s.14.旧车交易市场有一辆原价为12万元的轿车,已使用3年,如果第一年的折旧率为20%,后其折旧率有所变化,现知第三年末这辆轿车值7.776万元.假设这辆车第二、第三年平均每年的折旧率都相同为x,则由题意可得方程.15.根据牛顿发现的有关自由落体运动的规律,我们知道竖直向上抛出的物体,上升的高度h(m)与时间t(s)的关系式为h=v0t﹣gt2,一般情况下,g=9.8m/s2.如果v0=9.8m/s,那么经过s竖直向上抛出的小球的上升高度为4.9m.16.将4个数a,b,c,d排成2行2列,两边各加一条竖直线记成,定义:,上述记号叫做2阶行列式.若,则x=.17.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350﹣10a)件,但物价局限定每件商品加价不能超过进价的20%,若商店计划要赚400元,需要卖出件商品,每件商品应售价为元.18.如图,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,则横竖彩条的宽度分别为.三.做一做19.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?20.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?2016年人教版九年级数学上册同步测试:21.3实际问题与一元二次方程参考答案与试题解析一.选一选1.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825B.x+4.25%x=33825C.3×4.25%x=33825D.3(x+4.25x)=33825【考点】由实际问题抽象出一元一次方程.【专题】增长率问题.【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.【解答】解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.2.若一元二次方程x2﹣4x﹣5=0的根是直角三角形斜边上的中线长,则这个直角三角形的斜边长为()A.2B.10C.2或10D.5【考点】直角三角形斜边上的中线;解一元二次方程-因式分解法.【分析】解一元二次方程求出中线,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:因式分解得,(x+1)(x﹣5)=0,由此得,x+1=0,x﹣5=0,所以,x1=﹣1,x2=5,所以,直角三角形斜边上的中线长为5,所以,这个直角三角形的斜边长为2×5=10.故选B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,因式分解法解一元二次方程,熟记性质是解题的关键.3.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.4.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为()A.10B.12C.14D.17【考点】二元一次方程组的应用.【分析】本题中,因为售价=进价+利润,所以等量关系是:原进价+原来利润=进价降低后的进价+降价后的利润.【解答】解:设原进价为x,则:x+m%•x=95%•x+95%•x•(m+6)%,∴1+m%=95%+95%(m+6)%,∴100+m=95+0.95(m+6),∴0.05m=0.7解得:m=14.故选C.【点评】此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.5.由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5B.12(1﹣a%)2=5C.12(1﹣2a%)=5D.12(1﹣a2%)=5【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=5,把相应数值代入即可求解.【解答】解:第一次降价后的价格为12(1﹣a%),两次连续降价后售价在第一次降价后的价格的基础上降低a%,为12(1﹣a%)(1﹣a%),则列出的方程是12(1﹣a%)2=5,故选B.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.某单位要组织一次篮球联赛,赛制为单循环形式从一块长30cm,宽12cm的长方形薄铁皮的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为()A.1cmB.2cmC.3cmD.4cm【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设截去小正方形的边长为xcm,则长方形的面积﹣四个小正方形的面积=296cm2.【解答】解:设截去小正方形的边长为xcm,则30×12﹣4x2=296,整理,得4x2=64,解得x=4(舍去负值).故选:D.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32B.126C.135D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二.填一填9.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加3行3列.【考点】一元二次方程的应用.【分析】设队伍增加的行数为x,则增加的列数也为x,根据游行队伍人数的等量关系列出方程即可.【解答】解:设队伍增加的行数为x,则增加的列数也为x,根据题意得(8+x)(12+x)=8×12+69,解得x1=﹣23(舍去),x2=3.答:增加3行3列.故答案为:3,3.【点评】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.在实数范围内定义运算“※”,其法则为a※b=a2﹣b2,那么方程(4※3)※x=24的解为x1=5,x2=﹣5.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】根据a※b=a2﹣b2,得出(4※3)※x=24整理后的方程,再利用直接开平方法解方程即可.【解答】解:∵a※b=a2﹣b2,∴(4※3)※x=24,(16﹣9)※x=24,∴72﹣x2=24,∴x2=25,解得:x1=5,x2=﹣5,故答案为:x1=5,x2=﹣5.【点评】此题主要考查了直接开平方法解一元二次方程以及新定义运算,根据已知得出运算规律是解决问题的关键.11.参加一次聚会的每两人都握了一次手,所有人共握手10次,有5人参加聚会.【考点】一元二次方程的应用.【分析】设有