2014-2015学年武汉市黄陂区八年级下月考数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014-2015学年湖北省武汉市黄陂区八年级(下)月考数学试卷(5月份)一、选择题1.如果分式有意义,那么x的取值范围是()A.x>1B.x<1C.x≠1D.x=12.己知反比例数y=的图象过点(2,4),则下面也在反比例函数图象上的点是()A.(2,﹣4)B.(4,﹣2)C.(﹣1,8)D.(16,)3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.54.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组6.▱ABCD中增加下列条件中的一个,这个四边形是矩形,则增加的条件是()A.∠A+∠C=180°B.AB=ACC.AC=2ABD.对角线互相垂直7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.109.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.510.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定11.如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,AC=2,则BD的长度为()A.1B.C.D.12.如图,E为正方形ABCD的边BC上一动点,以AE为一边作正方形AEFD,对角线AF交边CD于H,连EH.①BE+DH=EH;②EF平分∠HEC;③若E为BC的中点,则H为CD的中点;④.其中正确的是()A.①②④B.①③④C.①②③D.①②③④二、填空题13.=.14.矩形、菱形、正方形都是轴对称图形,其中矩形有条对称轴;菱形有条对称轴;正方形有条对称轴.15.如图,矩形ABCD对角线AC经过原点O,B点坐标为(1,﹣3),若反比例函数(x>0)的图象过点D,则k=.16.Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(共9小题,满分0分)17.解方程:+3=.18.先化简(1+)÷,再选择一个你喜欢的恰当的x的值代入并求值.19.已知:▱ABCD中,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=8cm,AD=3cm,求EF的长.20.如图,矩形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,求证:四边形EFGH为菱形.21.如图①,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图②中用实线画出你所拼成的平行四边形;(2)若沿着BD剪开,请在图③中用实线画出拼成的平行四边形;(3)并直接写出这两个平行四边形的周长.图②中周长为图③中周长为(注:上述所画的平行四边形都不能与原菱形全等)22.如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2)F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO=(AF+AB).23.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系;(2)原计划若干天卸载完这批货物,但由于后一批货物要提前2天到达,则实际每天卸货数量比原计划每天多20%,恰好按时卸载完毕,求原计划每天卸载多少货物?24.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是cm2.25.如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN、DM的数量关系与位置关系,并说明理由;(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图(3),求tan∠DEM.2014-2015学年湖北省武汉市黄陂区八年级(下)月考数学试卷(5月份)参考答案与试题解析一、选择题1.如果分式有意义,那么x的取值范围是()A.x>1B.x<1C.x≠1D.x=1考点:分式有意义的条件.分析:本题主要考查分式有意义的条件:分母不为0,即1﹣x≠0.解答:解:∵1﹣x≠0,∴x≠1.故选C.点评:本题考查的是分式有意义的条件:当分母不为0时,分式有意义.2.己知反比例数y=的图象过点(2,4),则下面也在反比例函数图象上的点是()A.(2,﹣4)B.(4,﹣2)C.(﹣1,8)D.(16,)考点:反比例函数图象上点的坐标特征.分析:将(2,4)代入y=即可求出k的值,再根据k=xy解答即可.解答:解:∵反比例数y=的图象过点(2,4),∴k=xy=2×4=8,四个选项中只有D选项中(16,),16×=8.故选D.点评:本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°考点:平行四边形的性质.分析:根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=65°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.解答:解:∵EB⊥BC,ED⊥CD,∴∠EBC=90°,∠EDC=90°,∵在四边形EBCD中,∠E=65°,∴∠C=360°﹣∠E﹣∠EBC﹣∠EDC=115°,∵四边形ABCD为平行四边形,∴∠A=∠C=115°.故选C.点评:本题考查了平行四边形的性质及多边形的内角和,用到的知识点为:①四边形的内角和为360°,②平行四边形的对角相等.5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组考点:平行四边形的判定.专题:几何综合题;压轴题.分析:根据平行四边形的判断定理可作出判断.解答:解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C,点评:此题主要考查了平行四边形的判定定理,准确无误的掌握定理是做题的关键.6.▱ABCD中增加下列条件中的一个,这个四边形是矩形,则增加的条件是()A.∠A+∠C=180°B.AB=ACC.AC=2ABD.对角线互相垂直考点:矩形的判定;平行四边形的性质.分析:此题对矩形性质的考查,在平行四边形的基础上,只要满足一个角为直角即可.解答:解:∠A与∠C为对角,∠A=∠C,又∠A+∠C=180°,∴∠A=∠C=90°,又四边形为平行四边形,所以可得其为矩形;B中对角线与直角边相等,显然矩形中不可能存在;C中当其为菱形是也可满足这个条件,C也错;D中为菱形的判定,D错.故选A.点评:熟练掌握矩形的性质,能够判定一个四边形是矩形.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.专题:压轴题.分析:本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.解答:解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.点评:基本的定义、概念以及一些性质是做题的根本条件,熟练地运用可以为解答更深奥的题目奠定基础.8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.10考点:平行四边形的性质.分析:根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.解答:解:∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12.故选C.点评:能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.9.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.5考点:中点四边形.专题:规律型.分析:根据菱形和矩形的性质以及三角形中位线的性质以

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功