2015-2016学年山东省德州市夏津县七年级(上)期末数学试卷一、选择题(本题共小题,每小题3分,共36分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.﹣|﹣3|D.|﹣32|3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米C.15×107千米D.1.5×107千米4.如果单项式﹣xa+1y3与x2yb是同类项,那么a、b的值分别为()A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=25.下列方程中,解为x=2的方程是()A.3x﹣2=3B.﹣x+6=2xC.4﹣2(x﹣1)=1D.x+1=06.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1B.2C.3D.47.已知∠α=37°28′,则∠α的补角是()A.142°32′B.54°81′C.144°81′D.52°32′8.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.9.若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是()A.10B.1C.﹣4D.﹣810.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°11.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏12.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3bB.2a﹣4bC.4a﹣8bD.4a﹣10b二、填空题(本题共7小题,每小题4分,共28分)13.人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是.14.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为.15.如图,点D在线段BC上,已知∠BAC=90°,∠DAC+∠C=90°,则∠BAD和∠C的大小关系是,其依据是.16.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.17.若a是最小的正整数,b是绝对值最小的整数,c的绝对值是,则2a2﹣3bc+4c2的值是.18.多项式x+7是关于x的二次三项式,则m=.19.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.当微型机器人移动了2016cm时,它停在点.三、解答题(共56分)20.计算:(1)﹣32÷|﹣|﹣(﹣2)3×(﹣)(2)(﹣﹣+)÷.21.解方程:(1)2(x﹣3)﹣(3x﹣1)=1(2)﹣=1.22.已知M=2x2﹣5xy+6y2,N=3y2﹣4xy+2x2,求M﹣2N,并求当x=﹣1,y=2时,M﹣2N的值.23.双十一当天,某天猫商家举行促销活动,某件商品标价为330元,按标价的八折销售时,仍可获利20%,求这种商品每件的进价.24.如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.解:因为OD平分∠BOC,所以∠DOC=∠.因为,所以∠=∠COA,所以∠EOD=∠+∠=(∠+∠)=∠,因为∠AOB是直角,所以∠EOD=.25.(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.26.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费?(2)若该住户五月份的用电量是200度,则他五月份应交多少电费?2015-2016学年山东省德州市夏津县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【考点】正数和负数;绝对值.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.【点评】本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.﹣|﹣3|D.|﹣32|【考点】有理数的乘方;相反数;绝对值.【分析】根据有理数乘方的法则对各选项进行逐一解答即可.【解答】解:A、﹣(﹣3)=3>0,故本选项错误;B、(﹣3)2=9>0,故本选项错误;C、﹣|﹣3|=﹣3<0,故本选项正确;D、|﹣32|=9>0,故本选项错误.故选C.【点评】本题考查的是有理数的乘方,熟知有理数乘方的法则、相反数的定义及绝对值的性质是解答此题的关键.3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米C.15×107千米D.1.5×107千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150000000=1.5×108.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.如果单项式﹣xa+1y3与x2yb是同类项,那么a、b的值分别为()A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求得.【解答】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列方程中,解为x=2的方程是()A.3x﹣2=3B.﹣x+6=2xC.4﹣2(x﹣1)=1D.x+1=0【考点】一元一次方程的解.【分析】把x=2代入选项中的方程进行一一验证.【解答】解:A、当x=2时,左边=3×2﹣2=4≠右边,即x=2不是该方程的解.故本选项错误;B、当x=2时,左边=﹣2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解.故本选项正确;C、当x=2时,左边=4﹣2(2﹣1)=2≠右边,即x=2不是该方程的解.故本选项错误;D、x+1不是方程.故本选项错误;故选B.【点评】本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1B.2C.3D.4【考点】两点间的距离;相反数;单项式;等式的性质.【分析】根据相反数的概念、单项式的定义、等式的性质和两点间的距离的定义进行解答即可.【解答】解:a,b互为相反数,当a=0时,b=0,无意义,①错误;πxy的系数是π,②错误;若=,则x=y,③正确;A,B两点之间的距离是线段AB的长度,④错误.故选:A.【点评】本题考查的是相反数的概念、单项式的定义、等式的性质和两点间的距离的定义,掌握相关的概念和性质是解题的关键.7.已知∠α=37°28′,则∠α的补角是()A.142°32′B.54°81′C.144°81′D.52°32′【考点】余角和补角;度分秒的换算.【分析】根据补角的定义回答即可.【解答】解:∠α的补角=180°﹣∠α=180°﹣37°28′=142°32′.故选:A.【点评】本题主要考查的是补角的定义,掌握补角的定义是解题的关键.8.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.9.若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是()A.10B.1C.﹣4D.﹣8【考点】代数式求值.【专题】计算题.【分析】原式前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵2x2+3x=5,∴原式=2(2x2+3x)﹣9=10﹣9=1.故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.10.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°【考点】角平分线的定义.【分析】利用角平分线的性质和平角的定义计算.【解答】解:因为将顶点A折叠落在A′处,所以∠ABC=∠A′BC,又因为BD为∠A′BE的平分线,所以∠A′BD=∠DBE,因为∠ABC+∠A′BC+∠A′BD+∠DBE=180°,∴2∠A′BC+2∠A′BD=180°,所以∠CBD=∠A′BC+∠A′BD=90°.故选B.【点评】本题是角平分线性质及平角的性质的应用.11.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏【考点】一元一次方程的应用.【专题】优选方案问题.【分析】可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.【解答】解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×,70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.12.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3bB.2a﹣4bC.4a﹣8bD.4a﹣10b【考点】整式的加减.【专题】计算题.【分析】根据图形表示出新矩形的长与宽,即可确定出周长.【解答】解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.二、填空题(本题共7小题,每小题4分,共28分)13.人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是两点间线段最短.【考点】直线的性质:两点确定一条直线.【分析】一条弯曲的公路改为直道,使两点之间接近线段,因为两点之间线段最短,所以可以缩短路程.【解答】解:由题意把弯曲的公路改为直道,肯定要尽量缩短两地之间的里程,其中隐含着数学道理的是:两点间线段最短.故答案为:两点