2017-2018学年河北省保定市定州市八年级(上)期末数学试卷一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=23.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣25.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.18.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.710.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2abB.(a+b)2C.(a﹣b)2D.a2﹣b211.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.412.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2B.﹣=2C.+=D.﹣=二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)一粒芝麻约有0.000002千克,0.000002用科学记数法表示为千克.14.(3分)若x2﹣2ax+16是完全平方式,则a=.15.(3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.16.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=.17.(3分)在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.18.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为.三、解答下列各题(本题有8个小题,共66分)19.(8分)解答题.(1)计算:x(4x+3y)﹣(2x+y)(2x﹣y)(2)因式分解﹣3x3+6x2y﹣3xy220.(8分)解答题(1)先化简,再求值(1+)÷,其中x=3(2)解方程:21.(6分)如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.22.(8分)如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=°.23.(8分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.24.(8分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.25.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.2017-2018学年河北省保定市定州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=2【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.3.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b【分析】直接利用幂的乘方与积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:A.【点评】此题主要考查了幂的乘方与积的乘方以及合并同类项、同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣2【分析】根据因式分解的意义,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度【分析】根据平行线的性质,得出∠BDC=∠1=85°,再根据三角形外角性质,得出∠A=∠BDC﹣∠2=85°﹣37°=48°即可.【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.1【分析】先根据∠ACB为直角,∠A=30°,求出∠B的度数,再根据CD⊥AB于D,求出∠DCB=30°,再利用含30度角的直角三角形的性质即可直接求出答案.【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴BC=2BD=2,AB=2BC=4,∴AD=4﹣1=3.故选:B.【点评】此题主要考查学生对含30度角的直角三角形的性质这一知识点的理解和掌握,此题的突破点是利用直角和三角形的内角和定理,求出∠DCB=90°﹣∠B=30°,以后的问题即可迎刃而解了.8.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm【分析】分已知边4cm是腰长和底边两种情况讨论求解.【解答】解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为(16﹣4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.故选:B.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.7【分析】根据a2+b2=(a+b)2﹣2ab,直接代入求值即可.【解答】解:当a+b=﹣3,ab=1时,a2+b2=(a+b)2﹣2ab=9﹣2=7.故选:D.【点评】本题要熟记有关完全平方的几个变形公式,本题考查对完全平方公式的变形应用能力.10.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面