2017-2018学年广东省惠州市惠阳区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)据网络数据统计,2017年惠阳区现有人口约615000人,615000这个数字用科学记数法表示应为()A.61.5×104B.6.15×105C.0.615×106D.6.15×10﹣52.(3分)下面四个交通标志图中为轴对称图形的是()A.B.C.D.3.(3分)若分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠3D.x=34.(3分)下列计算正确的是()A.a6÷a2=a4B.(2a2)3=6a6C.(a2)3=a5D.(a+b)2=a2+b25.(3分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.(3分)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1B.2C.D.47.(3分)计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x28.(3分)如图,△ABC和△A′B'C′关于直线l对称,下列结论中,错误的是()A.△ABC≌△A′B′C′B.∠BAC'=∠B′ACC.l垂直平分CC′D.直线BC和B′C′的交点不在直线l上9.(3分)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.610.(3分)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB.∠EBC=∠ABEC.AE=ECD.AE=BE二、填空题(每小题4分,共24分)11.(4分)分解因式:2a2﹣8=.12.(4分)若分式的值为0,则x=.13.(4分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.14.(4分)计算:()﹣1﹣(﹣1)0=15.(4分)在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=.16.(4分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点.且DE=DF,连接BF,CE,有下列说法:①△ABD和△ACD的面积相等;②∠BAD=∠CAD;③BF∥CE;④CE=AE,其中,正确的说法有(填序号)三、解答题(每小题6分,共18分)17.(6分)化简:(1﹣)•18.(6分)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.19.(6分)如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.四、解答题(每小题7分,共21分)20.(7分)(1)运用多项式乘法,计算下列各题:①(x+2)(x+3)=②(x+2)(x﹣3)=③(x﹣3)(x﹣1)=(2)若:(x+a)(x+b)=x2+px+q,根据你所发现的规律,直接填空:p=,q=.(用含a、b的代数式表示)21.(7分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:(1)△BED≌△CFD;(2)AD平分∠BAC.22.(7分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.五、解答题(每小题9分,共27分)23.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1(2)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.24.(9分)惠阳区某中学2016年在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)2017年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?25.(9分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.2017-2018学年广东省惠州市惠阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)据网络数据统计,2017年惠阳区现有人口约615000人,615000这个数字用科学记数法表示应为()A.61.5×104B.6.15×105C.0.615×106D.6.15×10﹣5【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将615000用科学记数法表示为:6.15×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)下面四个交通标志图中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)若分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠3D.x=3【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.(3分)下列计算正确的是()A.a6÷a2=a4B.(2a2)3=6a6C.(a2)3=a5D.(a+b)2=a2+b2【分析】根据同底数幂相除,底数不变指数相减;积的乘方,把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;对各选项分析判断后利用排除法求解.【解答】解:A、a6÷a2=a4,故A正确;B、(2a2)3=8a6,故B错误;C、(a2)3=a6,故C错误;D、(a+b)2=a2+2ab+b2,故D错误.故选:A.【点评】本题考查同底数幂的除法、幂的乘方与积的乘方、完全平方公式,熟练掌握运算性质和法则是解题的关键.5.(3分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.(3分)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1B.2C.D.4【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.(3分)计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x2【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选:C.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.8.(3分)如图,△ABC和△A′B'C′关于直线l对称,下列结论中,错误的是()A.△ABC≌△A′B′C′B.∠BAC'=∠B′ACC.l垂直平分CC′D.直线BC和B′C′的交点不在直线l上【分析】根据轴对称的性质求解.【解答】解:A、△ABC和△A′B'C′关于直线l对称,△ABC≌△A′B′C′,选项A正确;B、△ABC和△A′B'C′关于直线l对称,∠BAC'=∠B′AC,选项B正确;C、△ABC和△A′B'C′关于直线l对称,l垂直平分CC',选项C正确;D、△ABC和△A′B'C′关于直线l对称,直线BC和B′C′的交点一定在直线l上,选项D错误.故选:D.【点评】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.9.(3分)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.6【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故选:A.【点评】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,含30度角的直角三角形性质的应用,关键是求出BD的长和得出CD=BD.10.(3分)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB.∠EBC=∠ABEC.AE=ECD.AE=BE【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:A.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等.二、填空题(每小题4分,共24分)11.(4分)分解因式:2a2﹣8=2(a+2)(a﹣2).【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)若分式的值为0,则x=2.【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=2.故答案为:2.【点评