2017-2018学年九年级(上)期中数学复习试卷(二次函数)一、填空题(共10小题,每小题3分,满分30分)1.将抛物线y=3x2向上平移1个单位得到的抛物线是.2.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.3.若二次函数y=x2﹣5x+m的图象与x轴只有一个交点,则m=;当x=时,y有最值是;当0<x<1时,y随x的增大而,y的取值范围是.4.若二次函数y=mx2﹣(2m+2)x﹣1+m的图象与x轴有两个交点,则m的取值范围是.5.已知二次函数y=ax2+bx+c的图象如图所示,则a0,b0,c0,△0.(用“<”,“=”或“>”号连接)6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:(1)对称轴方程;(2)a﹣b+c0,4a+2b+c0;(用“<”,“=”或“>”号连接)(3)当x时,y随x增大而减小;(4)方程ax2+bx+c=0的解为;(5)由图象回答:当y>0时,x的取值范围;当y=0时,x=;当y<0时,x的取值范围.7.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1y2.(用“<”,“=”或“>”号连接)8.已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是.9.抛物线y=(x﹣h)2﹣k的顶点坐标为(﹣3,1),则h﹣k=.10.请写出与抛物线y=x2形状相同,且经过(0,﹣5)点的二次函数的解析式.二、解答题(共4小题,满分0分)11.二次函数y=x2+bx+c的图象过点A(2,﹣9),且当x=﹣1时,y=0,(1)求这个二次函数的解析式;(2)求这个二次函数的顶点坐标.12.已知函数y1=ax2+bx+c,它的顶点坐标为(﹣3,﹣2),y1与y2=2x+m交于点(1,6),求y1、y2的函数解析式.13.在二次函数y1=ax2+bx+c中,部分x、y的对应值如表:x…﹣1﹣0123…y…﹣2﹣121﹣﹣2…(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)作直线y2=﹣x+3,则当y2在y1的图象下方时,x的取值范围是.14.在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.2017-2018学年九年级(上)期中数学复习试卷(二次函数)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.将抛物线y=3x2向上平移1个单位得到的抛物线是y=3x2+1.【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的规律解答.【解答】解:将抛物线y=3x2向上平移1个单位得到的抛物线是y=3x2+1.故答案是:y=3x2+1.2.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为y=(x+2)2﹣3.【考点】二次函数图象与几何变换.【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故答案为y=(x+2)2﹣3.3.若二次函数y=x2﹣5x+m的图象与x轴只有一个交点,则m=;当x=时,y有最小值是0;当0<x<1时,y随x的增大而减小,y的取值范围是y≥0.【考点】抛物线与x轴的交点;二次函数的最值.【分析】首先根据二次函数y=x2﹣5x+m的图象与x轴只有一个交点,求出m的值,根据二次函数的性质进行填空即可.【解答】解:∵二次函数y=x2﹣5x+m的图象与x轴只有一个交点,∴(﹣5)2﹣4m=0,∴m=,当x=时,二次函数有最小值为0,当0<x<1时,y随x的增大而减小,y的取值范围是y≥0,故答案为;;小;0;减小;y≥0.4.若二次函数y=mx2﹣(2m+2)x﹣1+m的图象与x轴有两个交点,则m的取值范围是m>﹣且m≠0.【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2﹣(2m+2)x﹣1+m的图象与x轴有两个交点,可得△=[﹣(2m+2)]2﹣4m×(﹣1+m)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2﹣(2m+2)x﹣1+m的图象与x轴有两个交点,则△=b2﹣4ac>0,△=[﹣(2m+2)]2﹣4m×(﹣1+m)>0,4m2+8m+4﹣4m2+4m>0,12m+4>0.∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0.故答案是:m>﹣且m≠0.5.已知二次函数y=ax2+bx+c的图象如图所示,则a>0,b<0,c>0,△=0.(用“<”,“=”或“>”号连接)【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线的开口方向,对称轴位置,与y轴交点的位置,与x轴交点的个数即可判断.【解答】解:由开口方向可知:a>0,由对称轴可知:﹣>0,∴b<0,∵抛物线与y轴交点在y的正半轴,∴c>0,∵抛物线与x轴只有一个交点,∴△=0,故答案为:a>0,b<0,c<0,△=0.6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:(1)对称轴方程x=﹣1;(2)a﹣b+c<0,4a+2b+c>0;(用“<”,“=”或“>”号连接)(3)当x<﹣1时,y随x增大而减小;(4)方程ax2+bx+c=0的解为x1=﹣3,x2=1;(5)由图象回答:当y>0时,x的取值范围x<﹣3或x>1;当y=0时,x=﹣3或1;当y<0时,x的取值范围﹣3<x<1.【考点】抛物线与x轴的交点.【分析】(1)利用抛物线与x轴的交点为对称点可得到抛物线的对称轴;(2)观察函数图象,利用x=﹣1,y<0和x=2,y>0求解;(3)根据二次函数的性质求解;(4)根据抛物线与x轴的交点问题求解;(5)观察图象,写出抛物线在x轴上方或与抛物线与x轴的交点或抛物线在x轴下方所对应的自变量的取值范围或取值.【解答】解:(1)抛物线与x轴的交点坐标为(﹣3,0)和(1,0),所以抛物线的对称轴为直线x=﹣1;(2)∵x=﹣1,y<0,∴a﹣b+c<0;∵x=2,y>0,∴4a+2b+c>0;(3)当x<﹣1时,y随x增大而减小;(4)方程ax2+bx+c=0的解为x1=﹣3,x2=1;(5)当y>0时,x的取值范围为x<﹣3或x>1;当y=0时,x=﹣3或1;当y<0时,x的取值范围为﹣3<x<1.故答案为x=﹣1;<,>;<﹣1;x1=﹣3,x2=1;x<﹣3或x>1;﹣3或1;﹣3<x<1.7.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1>y2.(用“<”,“=”或“>”号连接)【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质即可求解.【解答】解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵﹣4<x1<﹣2,0<x2<2,∴2<﹣x1<4,∴y1>y2.8.已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是y2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把三点的坐标分别代入可求得y1、y2、y3,再比例其大小即可.【解答】解:∵抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),∴y1=16a﹣8a+m=8a+m,y2=4a﹣4a+m=m,y3=a+2a+m=3a+m,∵a>0,∴m<3a+m<8a+m,即y2<y3<y1,故答案为:y2<y3<y1.9.抛物线y=(x﹣h)2﹣k的顶点坐标为(﹣3,1),则h﹣k=﹣2.【考点】二次函数的性质.【分析】由二次函数的顶点式可求得h和k的值,则可求得答案.【解答】解:∵抛物线y=(x﹣h)2﹣k的顶点坐标为(﹣3,1),∴h=﹣3,﹣k=1,解得h=﹣3,k=﹣1,∴h﹣k=﹣3﹣(﹣1)=﹣2,故答案为:﹣2.10.请写出与抛物线y=x2形状相同,且经过(0,﹣5)点的二次函数的解析式y=x2﹣5或y=﹣x2﹣5.【考点】待定系数法求二次函数解析式.【分析】先从已知入手:由与抛物线y=x2形状相同则|a|相同,且经过(0,﹣5)点,即把(0,﹣5)代入得c=﹣5,写出二次函数的解析式.【解答】解:设所求的二次函数的解析式为:y=ax2+bx+c,∵与物线y=x2形状相同,∴|a|=1,a=±1,且经过(0,﹣5),所以c=﹣5,∴所求的二次函数的解析式为:y=x2﹣5或y=﹣x2﹣5.二、解答题(共4小题,满分0分)11.二次函数y=x2+bx+c的图象过点A(2,﹣9),且当x=﹣1时,y=0,(1)求这个二次函数的解析式;(2)求这个二次函数的顶点坐标.【考点】待定系数法求二次函数解析式.【分析】(1)将(2,﹣9)、(﹣1,0)代入y=x2+bx+c,利用待定系数法即可确定二次函数的解析式;(2)把(1)中得到的解析式配成顶点式,然后根据二次函数的性质确定顶点坐标.【解答】解:(1)将(2,﹣9)、(﹣1,0)代入y=x2+bx+c,得,,解这个方程组,得,所以所求二次函数的解析式是y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,所以顶点坐标是(2,﹣9).12.已知函数y1=ax2+bx+c,它的顶点坐标为(﹣3,﹣2),y1与y2=2x+m交于点(1,6),求y1、y2的函数解析式.【考点】待定系数法求二次函数解析式;待定系数法求一次函数解析式.【分析】根据已知设出抛物线的解析式y=a(x+3)2﹣2,把(1,6)代入即可求得a的值,即可求得y1的函数解析式;把(1,6)代入y2=2x+m即可求得m的值,即可求得y2的函数解析式.【解答】解:根据题意,设抛物线的解析式y=a(x+3)2﹣2,∵抛物线经过点(1,6),∴6=a(1+3)2﹣2,解得a=,∴抛物线的解析式为y1=(x+3)2﹣2.把(1,6)代入y2=2x+m得6=2×1+m,解得m=4,∴y2的函数解析式为y2=2x+4.13.在二次函数y1=ax2+bx+c中,部分x、y的对应值如表:x…﹣1﹣0123…y…﹣2﹣121﹣﹣2…(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)作直线y2=﹣x+3,则当y2在y1的图象下方时,x的取值范围是x<1或x>2.【考点】二次函数的性质;二次函数的图象.【分析】(1)由题目所给表格可观察得出答案;(2)可先求得二次函数解析式,联立两函数解析式可求得两函数图象的交点坐标,可画出两函数图象,则可求得答案.【解答】解:(1)由表可知当x=1时,y有最大值,∴二次函数图象开口向下,其顶点坐标为(1,2);(2)∵抛物线顶点坐标为(1,2),∴设抛物线解析式为y=a(x﹣1)2+2,∵当x=0时,y=1,∴1=a+2,解得a=﹣1,∴抛物线解析式为y1=﹣(x﹣1)2+2=﹣x2+2x+1,联立两函数解析式可得,解得或,两函数图象如图所示:当y2在y1的图象下方时,结合图象x<1或x>2,故答案为:x<1或x>2.14.在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单