山东省莒县第三协作区2017-2018学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分)1.下列图标中,是轴对称图形的是()A.(1)(4)B.(2)(4)C.(2)(3)D.(1)(2)2.△ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55°B.60°C.70°D.75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.和点P(-3,2)关于y轴对称的点是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)5.已知12,ACAD,增加下列条件:①ABAE;②BCED;③CD;④BE。其中能使ABCAED的条件有()A.4个B.3个C.2个D.1个(第3题))(第7题)(第5题)6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里(第8题)(第9题)(第11题)(第12题)9.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.6011.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDEB.CE=ACC.AB⊥CDD.E为BC的中点12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD的面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共16分)13.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第14题)(第16题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.16、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共64分)17.(8)如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第17题)18(10).如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.19.(10)如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)21.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.八年级数学月考答案一、选择题1.D2.B3.C4.A5.B6.D7.A8.D9.D10.B11.D12.D二、填空13.a=314.13515.w523649916.19cm三、17.解:(1)如图.(第17题)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)718.(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF(SSS)(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF19a.证明:∵DA平分∠EDC,∴∠ADE=∠ADC.又∵DE=DC,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.21.(1)证明:在△ABD和△ACE中,AB=AC,∠1=∠2,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,∠C=∠B,AC=AB,∠CAM=∠BAN,∴△ACM≌△ABN(ASA),∴∠M=∠N22.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于点M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACE+∠ACB=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,理由同(1)