2017-2018学年河北省秦皇岛市海港区八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.在实数范围内,有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x<12.在3.1415926,,,中,无理数有()A.1个B.2个C.3个D.4个3.既是轴对称图形又是中心对称图形的是()A.直角三角形B.等边三角形C.等腰直角三角形D.圆4.下列根式是最简二次根式的是()A.B.C.D.5.若实数x,y满足|x﹣4|+=0,则以x,y的值为边长的等腰三角形的周长为()A.20B.16C.20或16D.126.若分式的值为0,则x的值为()A.﹣1B.1C.±1D.07.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等8.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1B.2C.3D.49.如图,△ABC中,∠A=50°,∠C=60°,DE垂直平分AB,则∠DBC的度数为()A.10°B.20°C.30°D.40°10.如图,在等边三角形ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM以下说法:①AD=AE=AM,②∠ECA=∠MCA,③CN=EC,④AD=DM中,正确的是()A.①②B.①②③C.①②③D.①②③④二、填空题(每空2分,共20分)11.化简:÷=;=.12.如图,AD为Rt∠ABC的角平分线,∠B=90°,AC=5,DB=2,则D到AC距离为.13.正方形的边长为a,它的面积与长为4cm、宽为12cm的长方形的面积相等,则a=cm.14.已知=2,则=.15.如图,△ABC中,AB=8,AC=6,BC=5,∠ABC与∠ACB的平分线相交于点O,过O点作DE∥BC,则△ADE的周长为.16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为千米/小时.17.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.18.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为.19.如图,数轴上A点表示数7,B点表示数5,C为OB上一点,当以OC、CB、BA三条线段为边,可以围成等腰三角形时,C点表示数.三、解答题(共50分)20.(9分)计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.21.(12分)如图,8×8网格中,每个小正方形边长为1.(1)分别画出△ABC绕O点逆时针旋转90°所得△A1B1C1及△ABC关于O点的中心对称图形;(2)连结A2B,BB2,判断△A2B2B形状并证明;(3)证明C2不在线段A2B上.22.(10分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图1,CD是△ABC的中线,CD=AB求证:△ABC为直角三角形.(3)如图2已知线段AB和直线l,点C是直线l上一点,若△ABC为直角三角形,请你用圆规和没有刻度的直尺确定点C位置.23.(9分)锐角△ABC中,E、D分别为AB,AC上一点,BD与CE相交于点M,BD=CE.(1)若∠BDC=∠CEB=90°,如图①①求证:△BDC≌△CEB;②求证:AM平分∠BAC.(2)若∠BDC≠90°,∠CEB≠90°,AB=AC,当BD=CE时,AM不一定平分∠BAC,请你在图②中尺规画图举例,并直接写出当AM不平分∠BAC时,∠BDC与∠CEB的关系.24.(10分)取一张长方形纸片ABCD(如图①),AB=8,BC=a.(1)当a=16时,按下列步骤操作①将图①纸片对折,使较长的两边BC,AD重合,折痕为EF,再打开纸片,如图②.②再折叠,使点A落在EF上的点G处,折痕为BH,如图③③连接AG,BG.请证明△ABG是等边三角形.(2)小明认为当a<8时,折不出边长为8的等边三角形.你认为他的说法正确吗?若不正确请通过计算说明,a满足什么条件时能折出一个边长为8的等边三角形?(3)当a足够大时,请你利用折纸,折出一个面积最大的等边三角形,并写出折法.2017-2018学年河北省秦皇岛市海港区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)在实数范围内,有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x<1【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内,有意义,∴x﹣1≥0,解得x≥1.故选:A.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.2.(3分)在3.1415926,,,中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.【解答】解:3.1415926是有限小数,是有理数,=2,是有理数,=4,是有理数,是开方开不尽的二次根式,是无理数.故选:A.【点评】本题主要考查的是无理数的概念,掌握无理数的常见类型是解题的关键.3.(3分)既是轴对称图形又是中心对称图形的是()A.直角三角形B.等边三角形C.等腰直角三角形D.圆【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、直角三角形不一定是轴对称图形,也不一定是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、等腰直角三角形是轴对称图形,不是中心对称图形;D、圆是轴对称图形,是中心对称图形;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=,故A不是最简二次根式;(C)原式,故C不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选:B.【点评】本题考查最简二次根式,解题的关键是理解最简二次根式,本题属于基础题型.5.(3分)若实数x,y满足|x﹣4|+=0,则以x,y的值为边长的等腰三角形的周长为()A.20B.16C.20或16D.12【分析】根据非负数的性质求出x、y,再分情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=8+8+4=20.综上所述,等腰三角形的周长是20.故选:A.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.6.(3分)若分式的值为0,则x的值为()A.﹣1B.1C.±1D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x≠0,解得:x=±1.故选:C.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.7.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.8.(3分)如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1B.2C.3D.4【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“HL”证明Rt△APO和Rt△BPO全等,根据全等三角形对应角相等可得∠APO=∠BPO,全等三角形对应边相等可得OA=OB【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故(1)正确;在Rt△APO和Rt△BPO中,,∴Rt△APO≌Rt△BPO(HL),∴∠APO=∠BPO,OA=OB,故(2)正确,∴PO平分∠APB,故(4)正确,OP垂直平分AB,但AB不一定垂直平分OP,故(3)错误,故选:C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质与判定方法是解题的关键.9.(3分)如图,△ABC中,∠A=50°,∠C=60°,DE垂直平分AB,则∠DBC的度数为()A.10°B.20°C.30°D.40°【分析】先根据三角形内角和定理求出∠ABC的度数,再由线段垂直平分线的性质求出∠ABD的度数,进而可得出结论.【解答】解:∵∠A=50°,∠C=60°,∴∠ABC=180°﹣50°﹣60°=70°.∵DE垂直平分AB,∴∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=70﹣50°=20°.故选:B.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.(3分)如图,在等边三角形ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM以下说法:①AD=AE=AM,②∠ECA=∠MCA,③CN=EC,④AD=DM中,正确的是()A.①②B.①②③C.①②③D.①②③④【分析】只要证明△ABD≌△ACE,△ADM是等边三角形,AC垂直平分线段EM即可一一判断;【解答】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠ACE=∠BAC=60°,∵BD=CE,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∵线段AE沿AC翻折,得到线段AM,∴AE=AM,CE=CM,∠ACE=∠ACM,故②正确,∴AD=AE=AM,故①正确,∴AC垂直平分线段EM,∵∠ECN=60°,∠CNE=90°,∴∠CEN=30°,∴CN=EC,故③正确,∵∠CAE=∠CAM,∠BAD=∠CAE,∴∠BAD=∠CAM,∴∠DAM=∠BAC=60°,∴△ADM是等边三角形,∴AD=AM,故④正确,故选:D.【点评】本题考查翻折变换、全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形就解决问题,属于中考选择题中的压轴题.二、填空题(每空2分,共20分)11.(4分)化简:÷=2;=,2.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:÷==2;=5.故答案为:2,2.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2分)如图,AD为Rt∠ABC的角平分线,∠B=90°,AC=5,DB=2,则D到AC距离为2.【分析】过D作DE⊥AC,利用角平分线的性质解答即可.【解答】解:过D作DE⊥AC,∵AD为Rt∠ABC的角平分线,∠B=90°,∴DE=BD=2,即D到AC距离为2,故