2018-2019学年武汉市蔡甸区八年级上期中数学试卷(含答案解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018-2019学年湖北省武汉市蔡甸区八年级(上)期中数学试卷一、选择题(10×3分30分)1.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8B.2<x<8C.0<x<6D.2<x<62.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°3.已知凸n边形有n条对角线,则此多边形的内角和是()A.360°B.540°C.720°D.900°4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSSB.SASC.AASD.HL6.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个7.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于()A.140°B.120°C.130°D.无法确定8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°9.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为()A.110°B.125°C.130°D.155°10.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.11二、填空题(6×3分=18分)11.凸多边形的外角和等于.12.已知两点A(﹣a,5),B(﹣3,b)关于x轴对称,则a+b=.13.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠ADE的度数为.14.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.15.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法中正确的序号是.①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.16.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三、解答题(共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形?18.(8分)如图,点B、E、C、F在同一直线上,BE=CF,AB=DE,AC=DF.求证:AB∥DE.19.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.20.(8分)如图,AD为△ABC的中线,F在AC上,BF交AD于E,且BE=AC.求证:AF=EF.21.(8分)如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.22.(10分)如图,在平面直角坐标系中有一个轴对称图形,A(3,2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.23.(10分)如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.24.(12分)已知射线AP是△ABC的外角平分线,连结PB、PC.(1)如图1,若BP平分∠ABC,且∠ACB=30°,直接写出∠APB=.(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.(3)如图2,若过点P作NM⊥BA,交BA延长线于M点,且∠BPC=∠BAC,求:的值.2018-2019学年湖北省武汉市蔡甸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(10×3分30分)1.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8B.2<x<8C.0<x<6D.2<x<6【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x<8.故选:B.【点评】考查了三角形的三边关系,能够熟练解不等式组.2.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°【分析】首先根据三角形内角和定理算出∠3+∠4的度数,再根据四边形内角和为360°,计算出∠1+∠2的度数.【解答】解:∵∠5=90°,∴∠3+∠4=180°﹣90°=90°,∵∠3+∠4+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°,故选:D.【点评】此题主要考查了三角形内角和定理,多边形内角和定理,关键是利用、三角形的内角和180°,四边形的内角和360°.3.已知凸n边形有n条对角线,则此多边形的内角和是()A.360°B.540°C.720°D.900°【分析】根据多边形的对角线公式得出方程,求出n,再根据多边形的内角和公式求出内角和即可.【解答】解:∵凸n边形有n条对角线,∴=n,解得:n=0(舍去),n=5,即多边形的边数是5,所以这个多边形的内角和=(5﹣2)×180°=540°,故选:B.【点评】本题考查了多边形的外角和内角、多边形的对角线,能熟记多边形的对角线公式和多边形内角和公式是解此题的关键,注意:n边形的内角和等于(n﹣2)×180°,n(n>3)边形的对角线的总条数=.4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSSB.SASC.AASD.HL【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.6.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.7.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于()A.140°B.120°C.130°D.无法确定【分析】根据三角形内角和定理求出∠ABC+∠ACB=100°,根据角平分线求出∠OBC=∠ABC,∠OCB=∠ACB求出∠OBC+∠OCB=50°,根据三角形的内角和定理求出即可.【解答】解:∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵BO、CO分别是∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=130°,故选:C.【点评】本题考查了三角形的内角和定理和角平分线定义的应用,注意:三角形的内角和等于180°.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为()A.110°B.125°C.130°D.155°【分析】由条件可证明△ACD≌△BCE,可求得∠ACB,再利用三角形内角和可求得∠APB=∠ACB,则可求得∠BPD.【解答】解:在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD﹣∠ACE)=×(155°﹣55°)=50°,∵∠B+∠ACB=∠A+∠APB,∴∠ABP=∠ACB=50°,∴∠BPD=180°﹣50°=130°,故选:C.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.11【分析】作DM⊥AC于M,DN⊥AB于N.首先证明BD:DC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,构建方程即可解决问题;【解答】解:作DM⊥AC于M,DN⊥AB于N.∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,∴DM=DN,∴S△ABD:S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,∵△OAE的面积比△BOD的面积大1,∴△ADC的面积比△BEC的面积大1,∴S﹣S=1,∴S=10,故选:C.【点评】本题考查三角形的面积、角平分线的性质定理、三角形的中线等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(6×3分=18分)11.凸多边形的外角和等于360°.【分析】根据多边形的外角和=360度解答即可.【解答】解:凸多边形的外角和等于360°,故答案为:360°【点评】本题考查多边形的内角与外角,利用多边形的外角和等于360°即可解决问题.12.已知两点A(﹣a,5),B

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功