保山市2015-2016学年八年级上期中数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年云南省保山市八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm3.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5B.4C.3D.24.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.一个正多边的内角和是外角和的3倍,这个正多边形的边数是()A.7B.8C.9D.106.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.在△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定8.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线9.如图,已知△ABC中DE∥BC,CD是∠ACB的平分线,其中∠AED=50°,则∠EDC的度数是()A.10°B.20°C.25°D.3°10.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.等边三角形是一个轴对称图形,它有条对称轴.13.如图,△ABC≌△DEF,BE=4,则AD的长是.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.15.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)16.已知点A(a,3)与点B(2,b)关于x轴对称,则a+b=.17.如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.18.一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共5小题,共66分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求∠D的度数.21.如图,已知∠1=∠2,AC=AD,求证:∠3=∠4.22.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.2015-2016学年云南省保山市八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm【考点】三角形三边关系.【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.3.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5B.4C.3D.2【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.【解答】解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选C.4.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【考点】全等三角形的性质.【分析】能够完全重合的两个三角形叫做全等三角形,利用全等三角形的性质判断得出即可.【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.5.一个正多边的内角和是外角和的3倍,这个正多边形的边数是()A.7B.8C.9D.10【考点】多边形内角与外角.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和3倍可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×3,解得:n=8,故选:B..6.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.7.在△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.【解答】解:设三角分别是a,2a,3a,则a+2a+3a=180°,解得a=30°,∴三角分别是30°,60°,90°,∴这个三角形是直角三角形.故选B.8.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线【考点】三角形的角平分线、中线和高;三角形中位线定理.【分析】根据三角形的高、中线、角平分线的性质解答.【解答】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选C.9.如图,已知△ABC中DE∥BC,CD是∠ACB的平分线,其中∠AED=50°,则∠EDC的度数是()A.10°B.20°C.25°D.3°【考点】平行线的性质;三角形内角和定理.【分析】先根据平行线的性质求出∠ACB的度数,再由角平分线的性质得出∠BCD的度数,进而可得出结论.【解答】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∠EDC=∠BCD.∵CD是∠ACB的平分线,∴∠BCD=∠ACB=25°,∴∠EDC=25°.故选C.10.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选B.二、填空题(本大题共8小题,每小题3分,共24分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.12.等边三角形是一个轴对称图形,它有3条对称轴.【考点】轴对称图形.【分析】根据轴对称图形和对称轴的概念求解.【解答】解:等边三角形是一个轴对称图形,它有3条对称轴.故答案为:3.13.如图,△ABC≌△DEF,BE=4,则AD的长是4.【考点】全等三角形的性质.【分析】根据全等三角形的性质推出AB=DE,都减去AE即可得出AD=BE=4.【解答】证明:∵△ABC≌△DEF,∴AB=DE,∴AB﹣AE=DE﹣AE,∴AD=BE=4.故答案为4.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【考点】解直角三角形的应用-坡度坡角问题.【分析】过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.15.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)【考点】全等三角形的判定.【分析】可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).16.已知点A(a,3)与点B(2,b)关于x轴对称,则a+b=﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出a,b的值即可.【解答】解:∵点A(a,3)与点B(2,b)关于x轴对称,∴a=2,b=﹣3,则a+b=2﹣3=﹣1.故答案为:﹣1.17.如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=220度.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的外角等于与它不相邻的两个内角和求解.【解答】解:∠1+∠2=180°+40°=220°.故答案为:220°.18.一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功