2014-2015学年北京市人大附中九年级(上)月考数学试卷(12月份)一、选择题(本题共32分,每小题4分)1.反比例函数y=的图象不一定经过点()A.(﹣3,1)B.(﹣3,﹣1)C.(1,3)D.(,2)2.下列图形中,不是轴对称图形的是()A.B.C.D.3.随机抛掷一枚质地均匀的硬币两枚,两次都是正面朝上的概率是()A.B.C.D.4.如图,⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,则弦DE的长为()A.3B.2C.4D.65.如图,正△ABC的边长为3,以A为圆心,AB为半径作弧,则图中阴影部分的面积是()A.B.C.﹣D.36.如图,四边形ABCD中,AB=AC=AD,∠CBD=23°,则∠CAD为()A.47°B.46°C.45°D.44°7.如图,AB为⊙O的一条固定直径,自左半圆上一点C,作弦CD⊥AB,∠OCD的平分线交⊙O于点E,当点C在左半圆(不包括A,B两点)上移动时,关于点E的说法:①到CD的距离始终不变;②位置始终不变;③始终平分;④位置随点C的移动而移动,正确的是()A.①②B.②③C.②D.④8.如图,正△ABC的边长为3,点N在AC边上且AN:NC=1:2,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,y=MN2,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题共16分,每小题4分)9.如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是__________.10.在Rt△ABC中,∠C=90°,AC=5,AB=13,则tanA的值是__________.11.如图,用一个交叉卡钳(OA=OB,OC=OD)测量零件的内孔直径AB,若OC:OA=1:2,且量的CD=12mm,则零件的内孔直径AB是__________mm.12.如图,△ABC中,AB=AC=1,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1做B1B2∥BC交AB于B2,作B2B3平分∠AB2B1交AC于B3,过B3作B3B4∥BC交AB于B4,…则线段B1B2的长度为__________,线段B2n﹣1B2n的长度为__________.三、解答题(本题共30分,每小题5分)13.用配方法解方程:.14.计算:3sin30°﹣cos245°+2tan60°cos30°.15.如图,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,请找出一条与线段CE相等的线段(以图中已知点的端点),画出这条线段并给出证明.16.已知m是方程x2﹣x﹣3=0的根,求代数式(1+)•(m﹣3)的值.17.如图,半径为5的⊙O中,AB是直径,弦BC=8,OD⊥AB交BC于D,求CD的长及△OCD的面积.18.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每天每间140元,为了吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?四、解答题(本题共20分,每小题5分)19.如图,直线y=﹣2x+1分别交x轴,y轴于点A,B,交反比例函数y=的图象于点C,CB:BA=2:1.(1)求反比例函数y=的解析式;(2)若点P在y轴上且以点B,C,P为顶点的三角形与△AOB相似,直接写出点P的坐标.20.如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.(1)求证:ED是⊙O的切线;(2)如果CF=1,CP=2,sinA=,求⊙O的直径BC.21.据报道,历经一年半的调查研究,北京PM2.5源解析已经通过专家论证.各种调查显示,机动车成为PM2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0035千克污染物.以下是相关的统计图、表:2013年北京市全年空气质量等级天数统计表空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)4113584474513(1)请根据所给信息补全扇形统计图;(2)请你根据“2013年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2013年机动车保有量已突破520万辆,请你通过计算,估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?22.如图1,给定锐角三角形ABC,小明希望画正方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上,他发现直接画图比较困难,于是他先画了一个正方形HIJK,是的H,I,位于射线BC上,K位于射线BA上,而不需要求J必须位于AC上.这是他发现可以将正方形HIJK通过放大或缩小得到满足要求的正方形DEFG.阅读以上材料,回答小明接下来研究的以下问题:(1)如图2,给定锐角三角形ABC,画出所有长宽比为2:1的长方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(2)已知三角形ABC的面积为36,BC=12,在第(1)问的条件下,求长方形DEFG的面积.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的二次函数y1=x2﹣(m+3)x+m+2,y2=﹣x2+bx+c.(1)求证:方程x2﹣(m+3)x+m+2=0必有实根;(2)若m为整数,y1的图象与x轴有一个交点的横坐标a满足5<a<7,求m的值;(3)在第(2)问的条件下,小明利用函数图象解关于x的不等式y1<y2,正确解得该不等式的解集为3<x<4,求y2的解析式.24.过正方形ABCD的顶点A任作一条直线l(l不过点B,C,D),过点B,C,D作l的垂线段BF,CG,DH.(1)如图1,若直线l过线段BC的中点E,则BF:CG:DH=__________.(2)如图2,若直线l与线段BC相交于点E,则BF,CG,DH满足等量关系式__________,请证明你的猜想;(3)如果直线l与线段CB的延长线相交,直接写出BF,CG,DH满足的等量关系式__________,在直线l旋转一周的过程中(l不过点B,C,D),直接写出y=的取值范围__________.25.定义:在平面直角坐标系xOy中,给定两点M(xM,yM),N(xN,yN),对于给定的实数a,b,作a|xM﹣xN|+b|yM﹣yN|为M,N的权重为a,b的直角距离,记为dxy(M,N),例如:d2,3((1,0),(4,7))=2|1﹣4|+3|0﹣7|=27.特别地,权重为1、1的直角距离,又称为等权重距离,则记为d(M,N),例如:d((1,0),(4,7))=|1﹣4|+|0﹣7|=10.根据以上定义,回答以下问题:(1)d((0,0),(﹣3,﹣2))=__________,d3,2((0,0),(﹣1,2))=__________.(2)P为直线y=2x+4上一动点,求OP的等权重距离的最小值及此时P点的坐标;(3)P为直线y=2x+4上一动点,Q为以O为圆心的单位圆上的动点,则d(P,Q)的最小值是__________,d3,2(P,Q)的最小值是__________.2014-2015学年北京市人大附中九年级(上)月考数学试卷(12月份)一、选择题(本题共32分,每小题4分)1.反比例函数y=的图象不一定经过点()A.(﹣3,1)B.(﹣3,﹣1)C.(1,3)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特点即可得出结论.【解答】解:A、∵(﹣3)×1=﹣3≠3,∴函数图象不过此点,故本选项正确;B、∵(﹣3)×(﹣1)=3,∴函数图象过此点,故本选项错误;C、∵3×1=3,∴函数图象过此点,故本选项错误;D、∵×2=3,∴函数图象不过此点,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.随机抛掷一枚质地均匀的硬币两枚,两次都是正面朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:共4种情况,正面都朝上的情况数有1种,所以概率是.故选B.【点评】本题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.4.如图,⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,则弦DE的长为()A.3B.2C.4D.6【考点】垂径定理;勾股定理.【分析】连接OD,先求出OD及OC的长,再由勾股定理求出DE的长即可.【解答】解:连接OD,∵⊙O的直径AB=8,弦DE经过OB的中点C且DE⊥OB,∴OD=4,OC=2,DE=2CD.∵CD===2,∴DE=2CD=4.故选:C.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分弦并且平分弦所对的弧是解题的关键.5.如图,正△ABC的边长为3,以A为圆心,AB为半径作弧,则图中阴影部分的面积是()A.B.C.﹣D.3【考点】扇形面积的计算.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为3,∴正△ABC的面积为×3×=,扇形ABC的面积为=,则图中阴影部分的面积是﹣.故选:C.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.6.如图,四边形ABCD中,AB=AC=AD,∠CBD=23°,则∠CAD为()A.47°B.46°C.45°D.44°【考点】圆周角定理.【分析】先根据四边形ABCD中,AB=AC=AD可知,B、C、D三点在以A为圆心,AD为半径的圆上,再由圆周角定理即可得出结论.【解答】解:∵四边形ABCD中,AB=AC=AD,∴B、C、D三点在以A为圆心,AD为半径的圆上.∵∠CBD=23°,∴∠CAD=2∠CBD=46°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,AB为⊙O的一条固定直径,自左半圆上一点C,作弦CD⊥AB,∠OCD的平分线交⊙O于点E,当点C在左半圆(不包括A,B两点)上移动时,关于点E的说法:①到CD的距离始终不变;②位置始终不变;③始终平分;④位置随点C的移动而移动,正确的是()A.①②B.②③C.②D.④【考点】圆周角定理;垂径定理.【分析】连接OE,由CE平分∠OCD,得到∠1=∠2,而∠1=∠E,所以有OE∥CD,则OE⊥AB,即可得到OE平分半圆AEB.【解答】解:连OE,如图,∵CE平分∠OCD,∴∠1=∠2,而OC=OE,有∠1=∠E,∴∠2=∠E,∴OE∥CD,∵点O到CD的距离在变,∴点E到CD的距离发生变;故①错误;又∵弦CD⊥AB,∴OE⊥AB,∴OE平分半圆AEB,即点E是半圆的中点,∴点E位置始终不变;故②正确.故选C.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了垂径定理的推论.8.如图,正△ABC的边长为3,点N在AC边上且AN:NC