北京市房山区2015-2016学年八年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年北京市房山区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.2的平方根是()A.±B.C.﹣D.42.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是轴对称图形的是()A.B.C.D.3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是()A.B.C.D.14.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的()A.3B.4C.7D.105.在0,π,,,0.021021021…这五个数字中,无理数有()A.2个B.3个C.4个D.5个6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射,线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是()A.SASB.ASAC.AASD.SSS7.某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的()A.平均数B.中位数C.众数D.频数8.下列计算正确的是()A.=aB.+=C.()2=aD.=9.如图,△ABC中,AC=3,BC=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是()A.2.4B.3C.4D.4.810.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围是.12.如果将一副三角板按如图方式叠放,那么∠1=.13.已知x1和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2=;x1•x2=.14.计算:(﹣)2+2=.15.“已知点P在直线l上,利用尺规作图过点P作直线PQ⊥l”的作图方法如下:①以点P为圆心,以任意长为半径画弧,交直线l于A、B两点;②分别以A、B两点为圆心,以大于AB的长为半径画弧,两弧交于点Q;③连接PQ.则直线PQ⊥l.请说明此方法依据的数学原理是.16.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为(用含n的式子表示,n为正整数).三、解答题(本题共30分,每题5分)17.计算:(1﹣)0+|2﹣|﹣+.18.用配方法解一元二次方程:x2+6x=9.19.从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).20.某调查小组采用简单随机抽样方法,对我区部分初中生每天进行课外阅读的时间进行了抽样调查,将所得数据进行整理后绘制成如下统计图表,根据图表中的信息回答下列问题:(1)该调查小组抽取的样本容量是多少?(2)分别补全两个统计图表;(3)请估计我区初中生每天进行课外阅读的平均时间.21.已知:关于x的一元二次方程(k﹣2)x2+2x+1=0有两个实数根.(1)求k的取值范围;(2)如果k为正整数,且该方程的两个实根都是整数,求k的值.22.对于正实数a、b,定义新运算a*b=﹣a+b.如果16*x2=61,求实数x的值.四、解答题(本题共21分)23.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0(m为实数)的两个实数根分别是△ABC的两边AB、AC的长,且第三边BC的长为5.当m取何值时,△ABC为直角三角形?24.列方程解应用题:某校为开展开放性综合实践活动,计划在校园内靠墙用篱笆围出一块长方形种植园地.已知离校墙10m的距离有一条平行于墙的甬路,如果篱笆的长度是40m,种植园地的面积是198m2,那么这个长方形园地的边长应该各是多少m?25.如图,在Rt△ABC中,∠ACB=90°,AB=8cm,AC=4cm,点D从点B出发,以每秒cm的速度在射线BC上匀速运动,当点D运动多少秒时,以A、D、B为顶点的三角形恰为等腰三角形?(结果可含根号).26.已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.2015-2016学年北京市房山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.2的平方根是()A.±B.C.﹣D.4【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵=2,∴2的平方根是±,故选:A.【点评】本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.2.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项错误;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、不是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是()A.B.C.D.1【考点】可能性的大小.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵袋中共有3+2=5个球,∴摸到白球的可能性是;故选B.【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的()A.3B.4C.7D.10【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为7,故选C.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.5.在0,π,,,0.021021021…这五个数字中,无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数的定义,即可解答.【解答】解:无理数是:π,,共2个,故选:A.【点评】本题考查了无理数,解决本题的关键是熟记无理数的定义.6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射,线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是()A.SASB.ASAC.AASD.SSS【考点】作图—基本作图;全等三角形的应用.【分析】根据“SSS”即可判定△ADB≌△ADC,由此即可解决问题.【解答】解:图2中,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD.故选D.【点评】本题考查基本作图、全等三角形的判定和性质等知识,熟练掌握全等三角形的判定就解题的关键,属于中考常考题型.7.某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的()A.平均数B.中位数C.众数D.频数【考点】统计量的选择.【分析】19人成绩的中位数是第10名的成绩.参赛选手要想知道自己是否能进入前10名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有19个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前10名,故应知道中位数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、频数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.下列计算正确的是()A.=aB.+=C.()2=aD.=【考点】二次根式的混合运算.【分析】根据二次根式的性质逐一判别即可得答案.【解答】解:A、=|a|,此选项错误;B、+不一定等于,此选项错误;C、()2=a,此选项正确;D、当a≥0,且b≥0时,=•,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算和二次根式的性质,熟练掌握二次根式的性质是解题的关键.9.如图,△ABC中,AC=3,BC=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是()A.2.4B.3C.4D.4.8【考点】轴对称-最短路线问题.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴∠ACB=90°,∴AB•CE=BC•AC,即5CE=3×4∴CE=.即CM+MN的最小值为.故选A.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.10.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.【考点】作图—应用与设计作图.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点M关于直线m的对称点M′,连接NM′交直线m于Q.根据两点之间,线段最短,可知选项D修建的管道,则所需管道最短.故选:D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.12.如果将一副三角板按如图方式叠放,那么∠1=105°.【考点】三角形内角和定理.【分析】由三角形的内角和为180°即可得出∠2+∠3+45°=180°结合∠2=30°即可求出∠3的度数,再由∠1和∠3为对顶角即可得出∠1的度数.【解答】解:给图中角标上序号,如

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功