2014-2015学年四川省成都市锦江区八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上.1.不等式x+1>3的解集是()A.x>1B.x>﹣2C.x>2D.x<22.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+x+1D.x2+4x+43.下列电视台的台标,是中心对称图形的是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.五边形的内角和为()A.720°B.540°C.360°D.180°6.若关于x的分式方程的解为x=2,则m值为()A.2B.0C.6D.47.若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.2010.如图,在Rt△ABC中∠ACB=90°,斜边上的中线CF=8cm,DE是△ABC的中位线,则下列叙述中,正确的序号为()①S△ACF=S△BCF;②DE=8cm;③四边形CDFE是矩形;④S△ABC=2S△CDE.A.①②④B.①③④C.②③④D.①②③二、填空题:本大题共4小题,每小题4分,共16分,答案写在答题卡上.11.已知:x2﹣y2=8,x﹣y=4,则x+y=.12.如果有意义,那么x应满足.13.若菱形的对角线长为24和10,则菱形的边长为.14.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.三、解答题:本大题共6个小题,共54分.解答过程写在答题卡上.15.(1)分解因式:(x+2)(x+4)+1(2)解不等式,并在数轴上表示它的解集.16.先化简,再求值:,其中.(结果精确到0.01)17.如图,在平行四边形ABCD中,P、Q是对角线BD上的两个点,且BP=DQ.求证:四边形APCQ为平行四边形.18.如图,△ABC三个顶点的坐标分别为A(﹣1,1),B(﹣4,2),C(﹣3,4).(1)请画出△ABC向右平移5个单位长度后得到△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.19.如图,一次函数y=﹣的图象分别与x轴、y轴交于点A、B,将线段AB绕A点顺时针旋转90°,点B落至C处,求过B、C两点直线的解析式.20.如图,四边形ABCD是正方形,点E在BC上,过D点作DG⊥DE交BA的延长线于G.(1)求证:DE=DG;(2)以线段DE、DG为边作出正方形DEFG,点K在AB上且BK=AG,连接KF,请画出图形,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想;(3)当时,请直接写出的值.四、填空题:本大题共5个小题,每小题4分,共20分,答案写在答题卡上.21.因式分解:2x3﹣8x2+8x=.22.若x+,则的值是.23.如图,直线y=﹣x+m与y=x+5的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+5>0的整数解为.24.如图,点O是等边△ABC内一点,∠AOB=110°,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD,若OD=AD,则∠BOC的度数为.25.对x、y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,﹣1)=﹣2,T(4,2)=1,若关于m的不等式组恰好有3个整数解,则实数P的取值范围是.五、解答题:本大题共三个小题,共30分,答案写在答题卡上.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A、B产品所需原料如表:类别甲种材料(千克)乙种材料(千克)1件A产品所需材料411件B产品所需材料33经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)27.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=,正方形ABCD的边长=;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.28.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.2014-2015学年四川省成都市锦江区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上.1.不等式x+1>3的解集是()A.x>1B.x>﹣2C.x>2D.x<2【考点】解一元一次不等式.【分析】移项、合并同类项即可求解.【解答】解:移项,得x>3﹣1,合并同类项,得x>2.故选C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+x+1D.x2+4x+4【考点】因式分解-运用公式法.【专题】因式分解.【分析】完全平方公式是:a2±2ab+b2=(a±b)2由此可见选项A、B、C都不能用完全平方公式进行分解因式,只有D选项可以.【解答】解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选D【点评】本题主要考查完全平方公式的判断和应用:应用完全平方公式分解因式.3.下列电视台的台标,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】首先解不等式组的每个不等式,然后根据不等式的表示法即可判断.【解答】解:,解①得x≤1,解②得x>﹣3.故选D.【点评】本题考查了不等式的解集在数轴上的表示法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.五边形的内角和为()A.720°B.540°C.360°D.180°【考点】多边形内角与外角.【分析】利用多边形的内角和定理即可求解.【解答】解:五边形的内角和为:(5﹣2)×180°=540°.故选:B.【点评】本题考查了多边形的内角和定理的计算公式,理解公式是关键.6.若关于x的分式方程的解为x=2,则m值为()A.2B.0C.6D.4【考点】分式方程的解.【专题】探究型.【分析】根据分式方程的解为x=2,将x=2代入方程可以得到m的值.【解答】解:∵分式方程的解为x=2,∴,解得m=6.故选C.【点评】本题考查分式方程的解,解题的关键是明确题意,用代入法求m的值.7.若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<2【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得当y>0时,x的取值范围.【解答】解:函数y=kx+b(k,b为常数)的图象,与x轴的交点坐标是(2,0),且y随x的增大而减小,∴当y>0时,有x<2.故选D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.20【考点】线段垂直平分线的性质.【专题】几何图形问题;数形结合.【分析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.【点评】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.10.如图,在Rt△ABC中∠ACB=90°,斜边上的中线CF=8cm,DE是△ABC的中位线,则下列叙述中,正确的序号为()①S△ACF=S△BCF;②DE=8cm;③四边形CDFE是矩形;④S△ABC=2S△CDE.A.①②④B.①③④C.②③④D.①②③【考点】三角形中位线定理;直角三角形斜边上