2015-2016学年辽宁省大连市中山区九年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)3.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底4.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACDB.∠ADBC.∠AEDD.∠ACB5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=96.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.2:1C.1:4D.4:17.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4B.0C.2D.38.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm2二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.19.如图,四边形ABCD内接于⊙O,E为AB延长线上一点,若∠AOC=140°.求∠EBC的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22.如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.23.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB=,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.25.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.26.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).2015-2016学年辽宁省大连市中山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.【考点】比例线段.【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【解答】解:根据四条线段满足,可得ab=cd,A、如果=,那么ad=cb,故此选项错误;B、如果=,那么ad=bc,故此选项错误;C、如果=,那么ab=cd,故此选项正确;D、如果=,那么ac=bd,故此选项错误.故选:C.【点评】此题主要考查了比例线段,掌握比例的基本性质,根据比例的基本性质实现比例式和等积式的互相转换是解题关键.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:抛出一枚硬币,落地后正面向上是随机事件,A不正确;打开电视,正在播放广告是随机事件,B不正确;篮球队员在罚球线投篮一次,未投中是随机事件,C不正确;实心铁球投入水中会沉入水底是必然事件,D正确.故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACDB.∠ADBC.∠AEDD.∠ACB【考点】圆周角定理.【专题】几何图形问题.【分析】根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.【解答】解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD,故A选项正确;B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACD不相等,故B选项错误;C、∠AED>∠ABD,故C选项错误;D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACB不相等,故D选项错误;故选:A.【点评】本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等.5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.6.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.2:1C.1:4D.4:1【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方计算即可得解.【解答】解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选:C.【点评】本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4B.0C.2D.3【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据函数图象得到﹣3<x<1时,y<0,即可作出判断.【解答】解:令y=0,得到x2+2x﹣3=0,即(x﹣1)(x+3)=0,解得:x=1或x=﹣3,由函数图象得:当﹣3<x<1时,y<0,则m的值可能是0.故选B.【点评】此题考查了抛物线与x轴的交点,利用了数形结合的思想,求出x的范围是解本题的关键.8.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm2【考点】圆锥的计算.【专题】计算题.【分析】首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.【解答】解:∵圆锥的高是4cm,底面半径是3cm,∴根据勾股定理得:圆锥的母线长为=5cm,则底面周长=6π,侧面面积=×6π×5=15πcm2.故选:B.【点评】考查了圆锥的计算,首先利用勾股定理求得圆锥的母线长是解决此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是c<4.【考点】根的判别式.【分析】利用方程有两个不相等的实数根时△>0,建立关于c的不等式,求出c的取值范围即可.【解答】解:由题意得△=b2﹣4ac=16﹣4c>0,解得c<4,故答案为c<4.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=70°.【考点】旋转的性质.【专题】探究型.【分析】直接根据图形旋转的性质进行解答即可.【解答】解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°