丹江口市22014-2015学年八年级下期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014-2015学年湖北省十堰市丹江口市八年级(下)期末数学试卷一、选择题(本题共10小题,每题3分,共30分.下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把你认为正确的结论代号填入下面表格中)1.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个2.若Rt△ABC中,∠C=90°且c=13,a=12,则b=()A.11B.8C.5D.33.平行四边形的一个内角为40°,它的另一个内角等于()A.40°B.140°C.40°或140°D.50°4.菱形的两条对角线长分别为18与24,则此菱形的周长为()A.15B.30C.60D.1205.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米6.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)9.如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A.B.C.D.10.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A.10B.13C.15D.无法求出二、填空题(本题共6小题,每小题3分,满分18分)11.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a=,b=.12.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数均为7,S甲2=3,S乙2=,因为S甲2S乙2,的成绩更稳定,所以确定去参加比赛.13.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.14.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.15.周末,小华骑自行车从家里出发到植物园游玩,从家出发0.5小时后,因自行车损坏修理了一段时间后,按原速前往植物园,小华离家1小时20分钟后,爸爸开车沿相同路线前往植物园,如图是他们离家的路程y(km)与小华离家时间x(h)的函数图象.已知爸爸开车的速度是小华骑车速度的3倍,若爸爸比小华早10分钟到达植物园,则从小华家到植物园的路程是km.16.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD交AB于点E.若AE=3,则OD的长为.三、解答题(本大题共9小题,共72分)17.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.18.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).19.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是,每人所创年利润的中位数是,平均数是;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?20.已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.21.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)614322.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.23.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.24.如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)如图2,连接DF、CE,探究线段DF与CE的关系并证明;(3)图1中,若AB=4,BG=3,求EF长.25.如图,直线y=﹣x+1交y轴于A点,交x轴于C点,以A,O,C为顶点作矩形AOCB,将矩形AOCB绕O点逆时针旋转90°,得到矩形DOFE,直线AC交直线DF于G点.(1)求直线DF的解析式;(2)求证:OG平分∠CGD;(3)在第一象限内,是否存在点H,使以G,O,H为顶点的三角形为等腰直角三角形?若存在请求出点H的坐标;若不存在,请什么理由.2014-2015学年湖北省十堰市丹江口市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分.下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把你认为正确的结论代号填入下面表格中)1.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选:A.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.若Rt△ABC中,∠C=90°且c=13,a=12,则b=()A.11B.8C.5D.3考点:勾股定理.分析:在直角三角形ABC中,利用勾股定理可得b=,代入数据可得出b的长度.解答:解:∵三角形ABC是直角三角形,∠C=90°,∴AC=,即b===5,故选C.点评:此题考查了勾股定理的知识,属于基础题,解答本题的关键是掌握勾股定理在解直角三角形中的运用.3.平行四边形的一个内角为40°,它的另一个内角等于()A.40°B.140°C.40°或140°D.50°考点:平行四边形的性质.分析:利用平行四边形的邻角互补进而得出答案.解答:解:∵平行四边形的一个内角为40°,∴它的另一个内角为:140°.故选:B.点评:此题主要考查了平行四边形的性质,正确利用平行四边形内角之间的关系是解题关键.4.菱形的两条对角线长分别为18与24,则此菱形的周长为()A.15B.30C.60D.120考点:菱形的性质.分析:根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,由菱形的四条边相等,继而求出菱形的周长.解答:解:∵AC=18,BD=24,菱形对角线互相垂直平分,∴AO=9,BO=12cm,∴AB===15,∴菱形的周长=4×15=60.故选C.点评:本题考查的是菱形的性质,考查了菱形各边长相等的性质及勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.5.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米考点:算术平均数;中位数;众数.分析:根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可.解答:解:A、1.65米是该班学生身高的平均水平,故A正确;B、因为小华的身高是1.66米,不是中位数,不能判断班上比小华高的学生人数不会超过25人,故B错误;C、这组身高数据的中位数不一定是1.65米,故C正确;D、这组身高数据的众数不一定是1.65米,故D正确.故选:B.点评:此题考查了算术平均数、中位数、众数,解答此题不是直接求平均数、中位数、众数,而是利用平均数、中位数、众数的概念进行综合分析,平均数受极值的影响较大,而中位数不易受极端值影响.6.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.分析:首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.解答:解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.点评:本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.7.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.解答:解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功