2014年四川省自贡市富顺县赵化中学八年级上册第14章《整式的乘法与因式分解》单元测试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请把你认为正确的标号填入题干后的括号内)1.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2分析:根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.2.(3分)计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b7考点:单项式乘单项式;幂的乘方与积的乘方.分析:先运用积的乘方,再运用单项式乘单项式求解即可.解答:解:(﹣2ab)(3a2b2)3=﹣2ab•27a6b6=﹣54a7b7,故选:D.点评:本题主要考查了幂的乘方与积的乘方及单项式乘单项式,解题的关键是熟记运算法则.3.(3分)下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a2考点:多项式乘多项式;单项式乘多项式;完全平方公式;平方差公式.分析:A、利用多项式乘以多项式法则计算,合并得到结果,即可做出判断;B、利用单项式乘多项式法则计算,合并得到结果,即可做出判断;C、利用完全平方公式计算得到结果,即可做出判断;D、利用平方差公式计算得到结果,即可做出判断.解答:解:A、(x+2)(x﹣3)=x2﹣x﹣6,本选项错误;B、(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2+4x,本选项错误;C、(x﹣2y)2=x2﹣4xy+4y2,本选项错误;D、(﹣4a﹣1)(4a﹣1)=1﹣16a2,本选项正确.故选:D.点评:此题考查了多项式乘以多项式,单项式乘多项式,完全平方公式,平方差公式,熟练掌握运算法则是解本题的关键.4.(3分)下列各式中,计算正确的是()A.(a﹣b)2=a2﹣b2B.(2x﹣y)2=4x2﹣2xy+y2C.(﹣a﹣b)(a+b)=a2﹣b2D.﹣(x﹣y)2=2xy﹣x2﹣y2考点:完全平方公式.分析:完全平方公式:(a±b)2=a2±2ab+b2.依此计算即可求解.解答:解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、应为(2x﹣y)2=4x2﹣4xy+y2,故本选项错误;C、应为(﹣a﹣b)(a+b)=﹣a2﹣2ab﹣b2,故本选项错误;D、﹣(x﹣y)2=2xy﹣x2﹣y2,正确.故选:D.点评:本题考查了完全平方公式,关键是要灵活应用完全平方公式及其变形公式.5.(3分)下列因式分解中,正确的是()A.x2﹣4=(x+4)(x﹣4)B.2x2﹣8=2(x2﹣4)C.a2﹣3=(a+)(a﹣)D.4x2+16=(2x+4)(2x﹣4)考点:提公因式法与公式法的综合运用;实数范围内分解因式.分析:分解因式首先提取公因式,再利用平方差进一步分解.解答:解:A、x2﹣4=(x+2)(x﹣2),故此选项错误;B、2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2),故此选项错误;C、a2﹣3=(a+)(a﹣),故此选项正确;D、4x2+16=4(x2+4),故此选项错误;故选:C.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6.(3分)下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+zD.﹣8x2+8x﹣2=﹣4(2x﹣1)2考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、合因式分解的定义,故本选项正确;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边≠右边,不是因式分解,故本选项错误符.故选:B.点评:本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7.(3分)若x2﹣2mx+1是完全平方式,则m的值为()A.2B.1C.±1D.考点:完全平方式.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.解答:解:∵x2﹣2mx+1=x2﹣2mx+12,∴﹣2mx=±2•x•1,解得m=±1.故选C.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.8.(3分)下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个考点:因式分解-运用公式法.分析:分别利用完全平方公式分解因式得出即可.解答:解:①x2﹣10x+25=(x﹣5)2,符合题意;②4a2+4a﹣1无法用完全平方公式因式分解;③x2﹣2x﹣1无法用完全平方公式因式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,符合题意;⑤无法用完全平方公式因式分解.故选:B.点评:此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.9.(3分)在单项式x2,﹣4xy,y2,2xy.4y2,4xy,﹣2xy,4x2中,可以组成不同完全平方式的个数是()A.4B.5C.6D.7考点:完全平方式.分析:根据完全平方公式的公式结构解答即可.解答:解:x2+2xy+y2=(x+y)2,x2﹣2xy+y2=(x﹣y)2,4x2+4xy+y2=(2x+y)2,x2+4xy+4y2=(x+2y)2,4x2﹣4xy+y2=(2x﹣y)2,x2﹣4xy+4y2=(x﹣2y)2,所以,共可以组成6个不同的完全平方式.故选C.点评:本题考查了完全平方公式,熟记公式结构是解题的关键.10.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1考点:多项式乘多项式.分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.解答:解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选A.点评:本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.11.(3分)若x2﹣x﹣m=(x+n)(x+7),则m+n=()A.64B.﹣64C.48D.﹣48考点:多项式乘多项式.分析:已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件求出m与n的值,即可确定出m+n的值.解答:解:∵x2﹣x﹣m=(x+n)(x+7)=x2+(n+7)x+7n,∴n+7=﹣1,﹣m=7n,解得:m=56,n=﹣8,则m+n=48.故选:C.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.(3分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6xD.3x3﹣8x2+1考点:整式的除法.分析:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.解答:解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.故选:D.点评:考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.13.(3分)已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xyB.2x2y2﹣2y+3xyC.2x2y3+2y﹣3xyD.2x2y3+y﹣3xy考点:整式的除法.分析:由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.解答:解:由题意得:长方形的宽=(18x3y4+9xy2﹣27x2y2)÷9xy=9xy(2x2y3+y﹣3xy)÷9xy=2x2y3+y﹣3xy.故选:D.点评:本题考查了整式的除法,从长方形的面积公式到整式除法,关键要从整式的提取公因式进行计算.14.(3分)下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)考点:去括号与添括号.分析:分别利用去括号以及添括号法则分析得出即可.解答:解;A、a+b﹣c=a+(b﹣c),故此选项错误;B、a+b+c=a+(b+c),故此选项错误;C、a﹣b+c﹣d=a﹣(b﹣c+d),此选项正确;D、a﹣b+c﹣d=(a﹣b)+(c﹣d),故此选项错误;故选:C.点评:此题主要考查了去括号以及添括号法则,正确掌握法则是解题关键.15.(3分)一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cmB.5cmC.8cmD.7cm考点:一元一次方程的应用.专题:几何图形问题.分析:根据正方形的面积公式找出本题中的等量关系,列出方程求解.解答:解:设这个正方形的边长为x,正方形的边长如果增加2cm,则是x+2,根据题意列出方程得x2+32=(x+2)2解得x=7.则这个正方形的边长为7cm.故选D.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.16.(3分)初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n﹣2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A.n2+n﹣6B.2n2+2n﹣12C.n2﹣n﹣6D.n3+n2﹣6n考点:整式的除法.分析:根据题意及数的整除性对每个选项分析解答得出正确选项.解答:解:A、(n2+n﹣6)÷[(n+3)(n﹣2)]=1,即n2+n﹣6能被n+3和n﹣2整除,即能平均分,故本选项错误;B、(2n2+2n﹣12)÷[(n+3)(n﹣2)]=2,即2n2+2n﹣12能被n+3和n﹣2整除,即能平均分,故本选项错误;C、n2﹣n﹣6不能被(n+3)和(n﹣2)整除,即不能平均分,故本选项正确;D、(n3+n2﹣6n)÷[(n+3)(n﹣2)]=n,即n3+n2﹣6n能被n+3和n﹣2整除,即能平均分,故本选项错误.故选:C.点评:此题考查的知识点列代数式,解答此题的关键是用数的整除性分析论证得出正确选项.17.(3分)如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab考点:勾股定理.分析:先求出AE即DE的长,再根据三角形的面积公式求解即可.解答:解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.(3分)已知(a+b)2=7,(a﹣b)2=4,则ab的值为()A.B.C.D.考点:完全平方公式.分析:两个式子相减,根据完全平方公式展开,合并同类项,再系数化为1即可求解.解答:解:(a+b)2