2015-2016学年湖北省恩施州咸丰县七年级(下)第一次月考数学试卷一、选择题1.如图,∠1和∠2是对顶角的图形有()个.A.1B.2C.3D.42.∠1与∠2互为邻补角,则下列说法不一定正确的是()A.∠1>∠2B.∠1+∠2=180°C.∠1与∠2有一条公共边D.∠1与∠2有一条边互为反向延长线3.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交4.如图所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个5.如图所示,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于()A.45°B.30°C.50°D.36°6.如图所示,a∥b,∠2是∠1的3倍,则∠2等于()A.45°B.90°C.135°D.150°7.点P为直线l外一点,点A、B、C为直线上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离为()A.2cmB.3cmC.小于3cmD.不大于3cm8.如图所示,已知∠1=∠2,要使∠3=∠4,只要()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.AB∥CD9.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补11.如图所示,△FDE经过怎样的平移可得到△ABC()A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长12.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角;其中正确的是()A.①②③B.①②③④C.①②③④⑤D.①②④⑤二、填空题13.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠2的对顶角是.14.如图,若∠1=25°,则∠2=,∠3=,∠4=.15.如图,∠1+∠2=180°,∠3=108°,则∠4=度.16.如图,△ABC是由四个形状、大小完全一样的三角形拼成,则可以看着是由△ADE平移得到的小三角形是.三.解答题(72分)17.推理填空:(1)∵AD∥BC,∴∠FAD=;(2)∵∠1=∠2,∴∥;(3)∵AD∥BC,∴∠C+∠=180°.18.按要求画图.(1)过P点画直线L的垂线(2)过点C画线段AB的垂线段19.如图,AB∥CD∥EF,写出∠A,∠C,∠AFC的关系并说明理由.20.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.21.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.22.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.23.直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的平分线(1)射线OE、OF在同一直线上吗?为什么?(2)OG平分∠AOD,OE与OG有什么位置关系?为什么?24.如图,在四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β.(1)试说明不论P在BC上怎么移动,总有α+β=∠B的理由;(2)点P在BC的延长线移动是否存在上述结论?若存在,给予证明;若不存在写出你的结论.2015-2016学年湖北省恩施州咸丰县七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.如图,∠1和∠2是对顶角的图形有()个.A.1B.2C.3D.4【考点】对顶角、邻补角.【分析】根据对顶角的两边互为反向延长线进行判断.【解答】解:图形中从左向右第1,2,4个图形中的∠1和∠2的两边都不互为反向延长线,故不是对顶角,只有第3个图中的∠1和∠2的两边互为反向延长线,是对顶角.故选:A.【点评】本题考查对顶角的定义,是一个需要熟记的内容.2.∠1与∠2互为邻补角,则下列说法不一定正确的是()A.∠1>∠2B.∠1+∠2=180°C.∠1与∠2有一条公共边D.∠1与∠2有一条边互为反向延长线【考点】对顶角、邻补角.【分析】根据邻补角的定义解答即可.【解答】解:由邻补角的定义得:B,C,D正确,A不一定正确,故选A.【点评】本题考查了邻补角的定义,是基础题,熟记概念是解题的关键.3.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交【考点】平行线的性质.【分析】此题需要先画图,根据图与已知,求解即可.【解答】已知:AB∥CD,PM与QN分别平分∠EMB与∠MND.求证:PM∥QN.证明:∵AB∥CD,∴∠EMB=∠MND,∵PM与QN分别平分∠EMB与∠MND,∴∠1=∠EMB,∠2=∠MND,∴∠1=∠2,∴PM∥QN.故选B.【点评】此题考查了平行线的性质与判定.解题时要注意文字题的解题方法:首先画图,写出已知求证,再证明.4.如图所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个【考点】平行线的性质.【分析】根据平行线的性质和对顶角相等作答.【解答】解:∵AB∥CD,∴∠3=∠1,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4.故选C.【点评】此题考查了平行线的性质:两直线平行,同位角相等.还考查了对顶角相等.解题时注意数形结合思想的应用.5.如图所示,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于()A.45°B.30°C.50°D.36°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠ADC=150°,再利用∠ADB:∠BDC=1:2,求出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC+∠C=180°,则∠ADC=150°,∵∠ADB:∠BDC=1:2,∴∠ADB+2∠ADB=150°,解得:∠ADB=50°故选:C.【点评】此题主要考查了平行线的性质,得出∠ADC的度数是解题关键.6.如图所示,a∥b,∠2是∠1的3倍,则∠2等于()A.45°B.90°C.135°D.150°【考点】平行线的性质.【分析】由a∥b,即可得∠3=∠1,又由∠2是∠1的3倍,即可得∠2=3∠3,由∠2+∠3=180°,即可求出∠2的度数.【解答】解:∵a∥b,∴∠3=∠1,∵∠2是∠1的3倍,∴∠2=3∠1=3∠3,∵∠2+∠3=180°,∴4∠3=180°,解得:∠3=45°,∴∠2=135°.故选C.【点评】此题考查了平行线的性质与二元一次方程组的解法.此题比较简单,注意掌握两直线平行,同位角相等定理的应用.7.点P为直线l外一点,点A、B、C为直线上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离为()A.2cmB.3cmC.小于3cmD.不大于3cm【考点】点到直线的距离.【分析】根据直线外一点到直线的垂线段的长度,叫做点到直线的距离,可得连接直线外一点P与直线上任意点,所得线段中垂线段最短;然后根据PA=3cm,PB=4cm,PC=5cm,可得三条线段的最短的是3cm,所以点P到直线l的距离不大于3cm,据此判断即可.【解答】解:连接直线外一点P与直线上任意点,所得线段中垂线段最短;因为PA=3cm,PB=4cm,PC=5cm,所以三条线段的最短的是3cm,所以点P到直线l的距离不大于3cm.故选:D.【点评】此题主要考查了点到直线的距离的含义以及特征,考查了分析推理能力的应用,解答此题的关键是要明确:连接直线外一点P与直线上任意点,所得线段中垂线段最短.8.如图所示,已知∠1=∠2,要使∠3=∠4,只要()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.AB∥CD【考点】平行线的判定.【分析】已知∠1=∠2,要使∠3=∠4,则需∠BEF=∠CFE.再根据平行线的判定,则需AB∥CD即可.【解答】解:假设∠3=∠4,即∠BEF=∠CFE,由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.故选D.【点评】在做探究题的时候注意要把已知和结论进行综合分析.9.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>【考点】命题与定理.【分析】利用平方的性质、绝对值的定义、不等式的性质及倒数的知识分别计算后即可确定正确的选项.【解答】解:A、当x=1,y=﹣2时若x>y,则x2>y2错误;B、若|a|=|b|,则a=±b,故错误;C、若a>|b|,则a2>b2正确;D、当a=时若a<1,则a>错误,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解平方的性质、绝对值的定义、不等式的性质及倒数的知识,难度不大.10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等以及同旁内角互补作答.【解答】解:如图知∠A和∠B的关系是相等或互补.故选D.【点评】如果两个的两条边分别平行,那么这两个角的关系是相等或互补.11.如图所示,△FDE经过怎样的平移可得到△ABC()A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长【考点】生活中的平移现象.【分析】易得两个三角形的对应顶点,前一个三角形的对应顶点到后一个三角形的对应顶点为平移的方向,两个三角形对应顶点之间的距离为移动的距离.【解答】解:由图中可以看出B和D是对应顶点,C和E是对应顶点,那么△FDE沿射线EC的方向移动DB长可得到△ABC,故选A.【点评】用到的知识点为:两个对应顶点之间的距离为平移的距离;从原图形的对应顶点到新图形的对应顶点为平移的方向.12.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角;其中正确的是()A.①②③B.①②③④C.①②③④⑤D.①②④⑤【考点】同位角、内错角、同旁内角.【分析】根据内错角、同位角以及同旁内角的定义寻找出各角之间的关系,再比照五种说法判断对错,即可得出结论.【解答】解:根据内错角、同位角以及同旁内角的定义分析五种说法.①∠1和∠4是同位角,即①成立;②∠3和∠5是内错角,即②成立;③∠2和∠6是内错角,即③不成立;④∠5和∠2是同位角,即④成立;⑤∠1和∠3是同旁内角,即⑤成立.故选D.【点评】本题考查了同位角、内错角以及同旁内角的定义,解题的关键是根据内错角、同位角以及同旁内角的定义寻找各角之间的关系.本题属于基础题,难度不大,解决该题型题目时,寻找到各角的关系再去对照各种说法即可得出结论.二、填空题13.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠1和∠4,∠2的对顶角是∠3.【考点】对顶角、邻补角.【分析】根据对顶角和邻补角的定义解答,注意两直线相交,一个角的对顶角只有一个,但邻补角有两个.【解答】解:由图形可知,∠1的邻补角是∠1和∠4,∠2的对顶角是∠3,故答案为:∠1和∠4,∠3.【点评】本题考查了邻补角和对顶角,解决本题的关键是熟记邻补角和对顶角的定义.14.如图,若∠1=25°,则∠2=155°,∠3=25°,∠4=155°.【考点】对顶角、邻补角.【专题】计算题.【分析】根据邻补角的定义和对顶角的性质,直线a、b相交,则∠1与∠2互为邻补角,即∠1+∠2=180°,把∠1=25°代入,可求∠2,再运用对顶角相等,可求∠3,∠4.【解答】解:∵∠1+∠2=180°,∠1=25°,∴∠2=180°﹣25°=155°.∴∠3=∠1=25°,∠4=∠2=155°.【点评】本题考查邻补角的定义和对顶角的性质,是一个需要熟记的内容.15.如图,∠1+∠2=180°,∠3=108°,则∠4=72度.【考点】平行线的判定与性质.【专题】计算题.【分析】