2015-2016学年四川省自贡市富顺县六校联考九年级(上)第一次联考数学试卷一、选择题(共10个小题,每小题4分,共40分)1.下列方程是一元二次方程的是()A.B.x2=0C.(2x+1)(2x﹣1)=4x(x+7)D.x(x2﹣5)=52.已知有一元二次方程3x2﹣6πx+2=0,则此方程的一次项系数为()A.6B.﹣6C.6πD.﹣6π3.方程(m﹣5)(m+1)=m﹣5的解是()A.m=0B.m=5C.m=5或m=0D.m=5或m=﹣14.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=55.若方程(x2+y2﹣1)2=16,则x2+y2=()A.5或﹣3B.5C.±4D.46.已知关于x的一元二次方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k≠0,方程总有两个不相等的实数根C.当k=1时,方程有一个实数根D.当k=﹣1,方程有两个相等的实数根7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定8.我们都知道从n边形的一个顶点出发可以引(n﹣3)条对角线.现有一个多边形所有对角线的总条数为90条,则这个多边形的边的条数是()A.14B.15C.16D.179.为了打造良好的校园学习环境,赵化中学用两年时间把校园种植花草树木的场地面积增加了69%,则这两年该校种植花草树木的场地面积平均每年增长率为()A.34.5%B.33%C.30%D.27%10.如图,将边长为12cm的正方形纸片ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分(见图中阴影)的面积为32cm2,则它移动的距离AA′等于()A.6cmB.8cmC.6cm或8cmD.4cm或8cm二、填空题(每题4分,共20分)11.方程x2=(x﹣1)0的解为__________.12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等的实数根,则k的取值范围是__________.13.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为,则方格纸的面积为__________.14.某种水稻原品种亩产500千克,出米率70%,新品种每亩收获的稻谷可加工大米462千克,新品种与原品种相比较,亩产量和出米率均大幅度上升,且稻谷亩产量的增长率是出米率的增长率的2倍,求稻谷产量亩产量的增长率?若设出米率的增长率为x,则列方程__________.(无需整理)15.若实数α、β分别满足α2+2016α﹣1=0与β2+2016β﹣1=0,αβ不等于0;则α2β+αβ2﹣αβ=__________.三、解答题(每小题16分,共16分)16.(16分)用适当的方法解下列方程:(1);(2)x2+2x﹣9999=0;(3)2x2﹣3x=1;(4)(2x﹣5)(x+3)=15﹣6x.四.解答题(每小题8分,共16分)17.分别写出满足下列条件的一元二次方程:(1)有一个根为0;(2)有一个根为﹣1;(3)两根相等;(4)两根互为相反数;(5)两根互为倒数;(6)两根分别为和.18.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)五.解答题(每小题10分,共20分)19.a、b、c为△ABC的三边,当m>0时,关于x的方程c(x2+m)+b(x2﹣m)﹣2ax=0有两个相等的实数根.(1)将方程整理为关于x的一元二次方程的一般形式;(2)求证:△ABC为直角三角形.20.若一元二次方程ax2+bx+c=0的一个根为1,且a、b满足等式b=﹣1.(1)求出a、b、c分别是多少?(2)求方程+c=0的解.六.解答题(本小题12分)21.已知:一个三角形两边长分别是6和8,第三边长x2﹣16x+60=0的一个实数根,试求第三边的长及该三角形的面积.七.解答题(本小题12分)22.阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程x2﹣|x﹣1|﹣1=0解:(1)当x﹣1≥0即x≥1时.|x﹣1|=x﹣1,原方程化为x2﹣(x﹣1)﹣1=0,即x2﹣x=0,解得x1=0,x2=1.∵x≥1,故x=0舍去,x=1是原方程的解(2)当x﹣1<0即x<1时.|x﹣1|=﹣(x﹣1),原方程化为x2+(x﹣1)﹣1=0,即x2+x﹣2=0,解得x1=1,x2=﹣2.∵x<1,故x=1舍去,x=﹣2是原方程的解.综上所述,原方程的解为x1=1,x2=﹣2.解方程:x2+2|x+2|﹣4=0.八.解答题(本小题14分)23.(14分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?2015-2016学年四川省自贡市富顺县六校联考九年级(上)第一次联考数学试卷一、选择题(共10个小题,每小题4分,共40分)1.下列方程是一元二次方程的是()A.B.x2=0C.(2x+1)(2x﹣1)=4x(x+7)D.x(x2﹣5)=5【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程,故A错误;B、是一元二次方程,故B正确;C、是元一次方程,故C错误;D、是一元三次方程,故D错误;故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.已知有一元二次方程3x2﹣6πx+2=0,则此方程的一次项系数为()A.6B.﹣6C.6πD.﹣6π【考点】一元二次方程的一般形式.【专题】计算题.【分析】找出方程的一次项系数即可.【解答】解:∵一元二次方程3x2﹣6πx+2=0,∴此方程的一次项系数为﹣6π.故选D.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.方程(m﹣5)(m+1)=m﹣5的解是()A.m=0B.m=5C.m=5或m=0D.m=5或m=﹣1【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(m﹣5)(m+1)﹣(m﹣5)=0,分解因式得:(m﹣5)(m+1﹣1)=0,解得:m=5或m=0,故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解解法是解本题的关键.4.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=5【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.【点评】此题考查了解一元二次方程﹣配方法,利用配方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后方程两边加上一次项系数一半的平方,左边化为完全平方式,右边化为非负常数,开方转化为两个一元一次方程来求解.5.若方程(x2+y2﹣1)2=16,则x2+y2=()A.5或﹣3B.5C.±4D.4【考点】解一元二次方程-直接开平方法.【分析】方程两边开方,求出x2+y2的值,再判断即可.【解答】解:(x2+y2﹣1)2=16,x2+y2﹣1=±4,x2+y2=5,x2+y2=﹣3,∵不论x、y为何值x2+y2都不等于﹣3,即x2+y2=5,故选B.【点评】本题考查了解一元二次方程的应用,熟记解一元一次方程的方法是解题的关键.6.已知关于x的一元二次方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k≠0,方程总有两个不相等的实数根C.当k=1时,方程有一个实数根D.当k=﹣1,方程有两个相等的实数根【考点】根的判别式;一元一次方程的解.【分析】分k=0,k≠0两种情况探讨,结合根的判别式解答即可.【解答】解:A、当k=0时,方程为一元一次方程,有解,此选项错误;B、当k≠0时,△=(1﹣k)2﹣4×k×(﹣1)=(1+k)2≥0,方程有两个实数根,此选项错误;C、当k=1时,方程为x2﹣1=0,x=±1,方程有两个不相等的实数根,此选项错误;D、当k=﹣1时,方程为﹣x2+2x﹣1=0,方程有两个相等的实数根,此选项正确.故选:D.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程根的判别与方程解的关系是解题的关键.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.我们都知道从n边形的一个顶点出发可以引(n﹣3)条对角线.现有一个多边形所有对角线的总条数为90条,则这个多边形的边的条数是()A.14B.15C.16D.17【考点】一元二次方程的应用;多边形的对角线.【分析】直接利用多边形对角线条数公式得出关于n的方程,进而求出即可.【解答】解:由题意可得:n(n﹣3)=90,解得:n1=﹣12(不合题意舍去),n2=15,答:这个多边形的边的条数是15条.故选:B.【点评】此题主要考查了一元二次方程的应用以及多边形的对角线,正确利用多边形对角线公式得出等式是解题关键.9.为了打造良好的校园学习环境,赵化中学用两年时间把校园种植花草树木的场地面积增加了69%,则这两年该校种植花草树木的场地面积平均每年增长率为()A.34.5%B.33%C.30%D.27%【考点】一元二次方程的应用.【专题】增长率问题.【分析】可设原来的绿化面积为1,由于每年的平均增长率为x,那么一年后绿化面积为:1×(1+x),下一年是在1×(1+x)的基础上增长了x,为1×(1+x)×(1+x)=1×(1+x)2.【解答】解:可设原来的绿化面积为1,由于每年的平均增长率为x,那么一年后绿化面积为:1×(1+x),则可列方程为:1×(1+x)2=1×(1+69%);即(1+x)2=1.69,1+x=1.3(取正值)x=0.3x=30%.故选C.【点评】考查了一元二次方程的应用,当题中一些必须的量没有时,可设其为1.本题还考查了要想表示出2年后的绿化面积,需先求得1年后的绿化面积.10.如图,将边长为12cm的正方形纸片ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分(见图中