江西省赣州市信丰县2015-2016学年八年级(下)期末数学试卷(解析版)一、选择题(共6小题,每小题3分,满分18分)1.要使式子有意义,则x的取值范围是()A.x>0B.x≥﹣2C.x≥2D.x≤22.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>34.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.5.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.C.D.6.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定二、填空题(共8小题,每小题3分,满分24分)7.如果实数a、b满足+(b+5)2=0,那么a+b的值为______.8.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件______,使四边形AECF是平行四边形(只填一个即可).9.一个正方形的面积是5,那么这个正方形的对角线的长度为______.10.把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为______.11.若数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数为______.12.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为______cm.13.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是______.14.如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为______.三、解答题(共8小题,满分58分)15.计算:(﹣)﹣﹣|﹣3|16.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?17.如图,正方形网格中每个正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,分别按下列要求画三角形.(1)其中一条边为无理数,两条边为有理数;(2)其中两条边为无理数,一条边为有理数;(3)三条边都能为无理数吗?若能在图(3)中画出,这些三角形的面积都是______(填有理数或无理数),并计算出你所画三角形的面积.18.如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.19.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.20.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g)737475767778甲的数量244311乙的数量236211根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是______g;乙厂抽取质量的众数是______g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.86.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?21.(10分)(2014•牡丹江)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.22.(10分)(2013•辽宁模拟)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.2015-2016学年江西省赣州市信丰县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.要使式子有意义,则x的取值范围是()A.x>0B.x≥﹣2C.x≥2D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.4.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.【考点】勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.【点评】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.5.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.C.D.【考点】勾股定理;实数与数轴.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.6.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S1>S2,故选:A.【点评】本题利用了正方形的性质和等腰直角三角形的性质求解.二、填空题(共8小题,每小题3分,满分24分)7.如果实数a、b满足+(b+5)2=0,那么a+b的值为﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质,求出a、b的值,再代入a+b求值即可.【解答】解:∵+(b+5)2=0,∴a﹣4=0,b+5=0,解得a=4,b=﹣5,∴a+b=4﹣5=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).【考点】平行四边形的判定与性质.【分析】根据平行四边形性质得出AD∥BC,得出AF∥CE,根据有一组对边相等且平行的四边形是平行四边形推出即可.【解答】解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.【点评】本题考查了平行四边形的性质和判定的应用,主要考查学生运用性质进行推理的能力,本题题型较好,是一道开放性的题目,答案不唯一.9.一个正方形的面积是5,那么这个正方形的对角线的长度为.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:设正方形的对角线长为x,由题意得,x2=5,解得x=.故答案为:.【点评】本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.10.把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为y=﹣2x+3.【考点】一次函数图象与几何变换.【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+3.故答案为:y=﹣2x+3.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.11.若数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数为1.【考点】众数;中位数.【分析】先根据中位数的定义可求得x,再根据众数的定义就可以求解.【解答】解:根据题意得,(1+x)÷2=1,得x=1,则这组数据的众数为1.故答案为1.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.12.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为10cm.【考点】线段垂直平分线的性质;平行四边形的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.【解答】解:∵AC,BD相交于点O∴O为BD的中点∵OE⊥BD∴BE=DE△ABE的周长=AB+AE+BE=AB+AD=×20=10cm△ABE的周长为10cm.故答案为10.【点评】本题考查的是平行四边形的性质及