2016-2017学年广西贵港市八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.计算×的结果是()A.B.4C.D.22.若分式的值为零,则x的值为()A.0B.1C.﹣1D.±13.若代数式有意义,则x的取值范围是()A.x>2且x≠3B.x≥2C.x≠3D.x≥2且x≠34.不等式2x﹣6<0的解集是()A.x>3B.x<3C.x>﹣3D.x<﹣35.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2nC.>D.m2>n26.不等式4(x﹣2)>2(3x+5)的非负整数解的个数为()A.0个B.1个C.2个D.3个7.不等式组的最小整数解是()A.0B.﹣1C.1D.28.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°9.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°11.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为()A.5B.7C.10D.912.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5B.6C.7D.8二、填空题(本小题共6小题,每小题3分,共18分)13.的平方根是.14.化简:﹣=.15.若实数x,y满足+=0,则代数式xy2的值是.16.已知等腰三角形的两边长分别为7和3,则第三边的长是.17.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.18.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是.三、解答题(本大题共8小题,66分)19.(1)计算:(﹣)×(2)计算:(4+﹣9)÷.20.如图,在△ABC中:(1)用直尺和圆规,在AB上找一点D,使点D到B、C两点的距离相等(不写作法.保留作图痕迹)(2)连接CD,已知CD=AC,∠B=25°,求∠ACB的度数.21.(1)解分式方程:=3+(2)解不等式组:.22.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.23.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().24.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.端午节前夕,某商店根据市场调查,用1320元购进第一批盒装粽子,上市后很快售完,接着又用2880元购进第二批这种盒装粽子,已知第二批所购的粽子盒数是第一批所购粽子盒数的2倍,且每盒粽子的进价比第一批的进价多1元.(1)第一批盒装粽子购进多少盒?(2)若两批粽子按相同的标价销售,最后剩下50盒按八折优惠售出,如果两批粽子全部售出后利润不低于25%(不考虑其他因素),那么每盒粽子的标价至少是多少元?26.已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE大小是否随着∠ACB的大小发生变化而发生变化,若变化写出变化规律,若不变,请求出∠APE的度数.2016-2017学年广西贵港市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.计算×的结果是()A.B.4C.D.2【考点】二次根式的乘除法.【分析】直接利用二次根式的乘法运算法则求出即可.【解答】解:×==4.故选:B.2.若分式的值为零,则x的值为()A.0B.1C.﹣1D.±1【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.3.若代数式有意义,则x的取值范围是()A.x>2且x≠3B.x≥2C.x≠3D.x≥2且x≠3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x﹣2≥0,再根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣2≥0,且x﹣3≠0,解得:x≥2,且x≠3,故选:D.4.不等式2x﹣6<0的解集是()A.x>3B.x<3C.x>﹣3D.x<﹣3【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时加上6再除以2,不等号的方向不变.【解答】解:∵2x﹣6<0,∴2x<6,∴x<3.故选B.5.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2nC.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.6.不等式4(x﹣2)>2(3x+5)的非负整数解的个数为()A.0个B.1个C.2个D.3个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:解不等式4(x﹣2)>2(3x+5)的解集是x<﹣9,因而不等式的非负整数解不存在.故选A.7.不等式组的最小整数解是()A.0B.﹣1C.1D.2【考点】一元一次不等式组的整数解.【分析】求出不等式组的解集,确定出最小的整数解即可.【解答】解:不等式组整理得:,解得:﹣<x≤4,则不等式组的最小整数解是0,故选A.8.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【考点】等腰三角形的性质;三角形内角和定理.【分析】根据三角形内角和定理和等腰三角形的性质,可以计算其顶角的度数.【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选D.9.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【考点】等腰三角形的性质.【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.10.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°【考点】线段垂直平分线的性质.【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.11.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为()A.5B.7C.10D.9【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据垂直平分线上的点到线段两个端点的距离相等,得GB=GA,即△GBC的周长=AC+BC,从而就求得了BC的长.【解答】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB(垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.12.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5B.6C.7D.8【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线的性质,可得∠DBF与∠FBC的关系,∠ECF与∠FCB的关系,根据两直线平行,可得∠DFB与∠FBC的关系,∠EFC与∠FCB的关系,根据等腰三角形的判定,可得BD与DF的关系,EF与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB.∵DE∥BC,∴∠FBC=∠DFB,∠EFC=∠FCB.∠DBF=∠DFB,∠EFC=∠ECF.∴DB=DF,EF=EC,DE=DF+EF=DB+EC=8,故选:D.二、填空题(本小题共6小题,每小题3分,共18分)13.的平方根是±4.【考点】平方根;算术平方根.【分析】先计算出256的算术平方根为16,然后求16的平方根即可.【解答】解:∵=16,而16的平方根为±4,∴的平方根是±4.故答案为±4.14.化简:﹣=.【考点】分式的加减法.【分析】直接根据分式的加减法则进行计算即可.【解答】解:原式==.故答案为:.15.若实数x,y满足+=0,则代数式xy2的值是﹣6.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+3=0,y﹣=0,解得x=﹣3,y=,所以,xy2=﹣3×()2=﹣6.故答案为:﹣6.16.已知等腰三角形的两边长分别为7和3,则第三边的长是7.【考点】等腰三角形的性质;三角形三边关系.【分析】分7是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故答案为7.17.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【考点】等腰三角形的性质.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180