2018-2019学年广西南宁市八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分)1.(3分)下面有4个图案,其中有()个是轴对称图形.A.一个B.二个C.三个D.四个2.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE3.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°4.(3分)若等腰三角形的两边长分别为4和9,则它的周长为()A.22B.17C.13D.17或225.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BFB.∠ACE=∠ACBC.AE=BED.CD⊥BE6.(3分)到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高7.(3分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE8.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()[来源:学科网]A.∠B=∠CB.AD=AEC.BD=CED.BE=CD9.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.[来源:Zxxk.Com]A.4个B.3个C.2个D.1个10.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°11.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A.B.C.D.12.(3分)平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有()A.4个B.8个C.10个D.12个二.填空题(共8小题,满分24分,每小题3分)13.(3分)从一个十二边形的同一个顶点出发,分别连接这个顶点与其余各点,可以把这个多边形分割成个三角形.14.(3分)如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=.[来源:学科网ZXXK]15.(3分)在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=.16.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.(3分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.18.(3分)如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为.19.(3分)∠A+∠B+∠C+∠D+∠E+∠F的度数=.20.(3分)如图,△ABC中,AB=63,AC=50,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为.三.解答题(共6小题,满分60分)21.(8分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.22.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠B>∠C,试探求∠DAE、∠B、∠C之间的数量关系.23.(10分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.24.(10分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.[来源:学科网]25.(12分)如图.(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各顶点坐标;(2)求△A1B1C1的面积.26.(12分)如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,求证:∠AFG+∠BEF=∠GFE.参考答案一.选择题1.B;2.D;3.B;4.A;5.C;6.B;7.A;8.D;9.B;10.B;11.B;12.C;[来源:Z,xx,k.Com]二.填空题13.10;14.32°;15.90°;16.60°或120°;17.(﹣2,﹣1);18.10;19.360°;20.113;三.解答题略