数学试卷姓名:得分:一.选择题。(每题中均只有一个最佳选项,选出最佳选项。本大题共10小题、每小题3分,共30分。)1.在任意△ABC与△DEF中AB=DE,若需添加两个条件使这两三角形全等。则有多少种不同的添法········································································()A.6B.9C.18D.282.下列图形中为轴对称图形的是················································()3.点A(x,y)关于x轴对称的点为(z,x+3),关于Y轴对称的点为(z-2,y)。则点A的坐标为···········································································()A.(1,4)B.(—1,4)C.(—1,—4)D.(1,—4)4.如下图,在△ABC中∠BAC=90°且点D为BC的中点AD⊥BC,若AB=5√2,AD=5.则△ABC的周长为···································································()5.能使分式1212xxx的值为零的所有x的值是()A.1xB.1xC.1x或1xD.2x或1x6.果把分式yxxy中的x和y都扩大2倍,即分式的值····························()A.扩大4倍;B.扩大2倍;C、不变;D.缩小2倍7.已知m—n=—1,则(m—n)²—2m+2n的值是···································()A.2B.3C.1D.—18.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是··················································()x/分y/千米O1234567201030405060A.1B.2.C.3D.4A.10+10√2B.10+5√2C.20D.20+√2马场中学2014年八年级(上)期末测试x/分y/千米O1234567201030405060x/分y/千米O1234567201030405060x/分y/千米O1234567201030405060A.1515112xxB.1515112xxC.1515112xxD.1515112xx9.比较,,的大小,正确的是()A.<<B.<<C.<<D.<<10.如图,在△ABC中,∠ABC=45°,AC=8,F是高AD和BE的交点。若三角形ABE的面积为10,则AE的长为····························································()二.填空题。(填写最简答案在答题卷相应位置;本答题共8小题、每小题3分,共24分)1.在分式中,x的取值范围是···························2.一个数的平方为9,那么这个数的立方为··························3.若a+b=4,ab=2.则的值为····································4.观察下列等式:错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。①9—1=2×4,②25—1=4×6,③49—1=6×8···,按照这种规律写出第100个等式························································5.已知2x²—x—2=0,则代数式x²+=;代数式+=···6.已知在正方形网格中,每个小方格的边长为1,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上。且以A,B,C为顶点的正方形面积为1,则点C的个数为·7.已知方程3x+2y=6,用含x的代数式表示y,则y=.8.若点P(-5,8)关于X轴对称的点的坐标为.三.计算题。(本大题共3小题、每小题6分,共18分。)x/分y/千米O1234567201030405060A.2B.4C.6D.81..41622222xxxxx(解方程)(2)中a满足2270aa(先化简,再求值。)错误!未找到引用源。2错误!未找到引用源。.2[()(2)8]2xyyxyxx,其中x=-2(先化简,再求值。)3.22114.31415.320+20145)(·201351)(+4(计算)四.作图题。(均不写作图过程,保留作图痕迹。本大题共2小题,每小题4分、共8分。)1.∠ACB内部有点P,在AC、CB边上分别作出点M、N,使△MPN的周长最小2.小明正在A处放牛,他将去到河边CD给牛喂水,再回到家B.请画出最短路线。五.解答题。(不要忽略必要步骤。本大题共4小题,第1、2小题4分、第2、4小题6分,共20分。)1.因式分解:x3+2x2y+xy2.2.解方程:.CAABp3如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长.4.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由;(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.部分题答案一,1~5:CCDAB6~10CBBCC10~12BA二,1:x>1且x≠1.52:+27或—273:四分子三4:40401—1=200×2025:2.25;16分子496:6三,1:x=—2为增根2:解:原式=421x;当x=-2时,原式=-53:8四,略,利用对称及线段垂直平分线的性质五,略。。。。。。。。。