2015-2016学年安徽省合肥市包河区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.函数y=的自变量x的取值范围是()A.x≠﹣2B.x≥﹣2C.x>﹣2D.x<﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1B.m=1C.m=±1D.m≠19.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>210.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年安徽省合肥市包河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣2,3)所在的象限是第二象限,故选B.3.函数y=的自变量x的取值范围是()A.x≠﹣2B.x≥﹣2C.x>﹣2D.x<﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得:x+2≥0,解得x≥﹣2.故选:B.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项D.故选D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【考点】命题与定理.【分析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.【解答】解:A、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D.8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1B.m=1C.m=±1D.m≠1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2﹣1的图象经过原点,∴0=0+m2﹣1,m﹣1≠0,即m2=1,m≠1解得,m=﹣1.故选A.9.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为30°.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DB,得到∠B=∠DAB,根据角平分线的定义得到∠DAB=∠DAC,根据三角形内角和定理计算即可.【解答】解:∵DE是△ABC的AB边的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=﹣2x+2.【考点】一次函数图象与几何变换.【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【解答】解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为10°.【考点】轴对称的性质;三角形的外角性质.【分析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.【解答】解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.14.如图,△ABC中,AB=AC,D