合肥市瑶海区2015-2016学年七年级下期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年安徽省合肥市瑶海区七年级(下)期末数学试卷一、选择题1.实数9的平方根是()A.±3B.3C.±D.2.人体中成熟的红细胞的平均直径为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.77×10﹣6C.77×10﹣5D.7.7×10﹣63.在下列各实数中,属于无理数的是()A.0.23B.﹣C.D.4.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x45.下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)6.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46°B.48°C.56°D.72°7.若n<﹣1<n+1(n是正整数),则n的值是()A.2B.3C.4D.58.若分式的值为零,则x的值是()A.4B.﹣4C.4或﹣4D.169.下列说法中不正确的是()A.若a>b,则a﹣1>b﹣1B.若3a>3b,则a>bC.若a>b,且c≠0,则ac>bcD.若a>b,则7﹣a<7﹣b10.某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12B.﹣=12C.﹣=4D.+12=二、填空题11.分解因式:ax2﹣4a=.12.若m﹣n=3,mn=1,则m2+n2=.13.若记y=f(x)=,并且f(1)表示:当x=1时,y的值,即f(1)==,那么f(1)+f(2)+f()+f(3)+f()+…+f(2016)+f()=.14.如图所示,下列结论正确的有(把所有正确结论的序号都选上)①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.三、解答题15.(6分)计算:()﹣2+﹣(2016+π)0+.16.(6分)化简:(2x﹣3)(x﹣2)﹣(x﹣1)2.17.(8分)解不等式组:,并将解集在数轴上表示出来.18.(8分)解方程:1+=.19.(8分)某种品牌毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买几条毛巾?20.(10分)如图,∠AED=∠C,∠1=∠B,说明:EF∥AB请结合图形,补全下面说理过程,括号中填说理依据.因为∠AED=∠C(已知)所以DE∥BC()又因为∠1=∠()所以∠B=∠EFC()所以(同位角相等,两直线平行)21.(10分)先化简(+)÷,再求值,其中﹣2≤a≤2且a为整数,请你从中选取一个喜欢的数代入求值.22.(10分)我们把分子为1的分数叫做单位分数,如,,,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…(1)根据对上述式子的观察,你会发现,请写出□,○所表示的数;(2)进一步思考,单位分数=+,(n是不小于2的正整数)请写出△,☆所表示的式子,并对等式加以验证.23.(12分)△ABC在网格中的位置如图所示,请根据下列要求解答:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)比较AB和AD的大小,并说明理由;(4)将△ABC先向下平移5格,再向右平移6格得到△EFG(点A的对应点为点E,点B的对应点为点F,点C的对应点为点G).24.(12分)利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性(1)根据图1写出一个代数恒等式;(2)恒等式:(2a+b)(a+b)=2a2+3ab+b2,也可以用图2面积表示,请用图形面积说明(2a+b)(a+b)=2a2+3ab+b2(3)已知正数a、b、c和m、n、l满足a+m=b+n=c+l=k,试构造边长为k的正方形,利用面积来说明al+bm+cn<k2.2015-2016学年安徽省合肥市瑶海区七年级(下)期末数学试卷参考答案与试题解析一、选择题1.实数9的平方根是()A.±3B.3C.±D.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴实数9的平方根是±3,故选:A.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.2.人体中成熟的红细胞的平均直径为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.77×10﹣6C.77×10﹣5D.7.7×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在下列各实数中,属于无理数的是()A.0.23B.﹣C.D.【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【解答】解:A、0.23是有理数,故本选项错误;B、﹣是有理数,故本选项错误;C、是无理数,故本选项正确;D、=4,是有理数,故本选项错误;故选C.【点评】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.4.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;积的乘方等于乘方的积;同底数幂的乘法底数不变指数相加;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式化成几个整式乘积的形式,可得答案.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、把一个多项式化成几个整式乘积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式化成几个整式乘积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式化成几个整式乘积的形式.6.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46°B.48°C.56°D.72°【考点】平行线的性质.【分析】求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:如图:∵∠1=42°,∴∠3=90°﹣42°=48°,∵a∥b,∴∠2=∠3,∴∠2=48°,故选B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.7.若n<﹣1<n+1(n是正整数),则n的值是()A.2B.3C.4D.5【考点】估算无理数的大小.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵16<21<25,∴4<<5,∴3<﹣1<4,∴n=3.故选B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.8.若分式的值为零,则x的值是()A.4B.﹣4C.4或﹣4D.16【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣16=0解得:x=±4.而x=4时分母x﹣4=4﹣4=0,分式没有意义.当x=﹣4时分母x﹣4=﹣8≠0,所以x=﹣4,故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.下列说法中不正确的是()A.若a>b,则a﹣1>b﹣1B.若3a>3b,则a>bC.若a>b,且c≠0,则ac>bcD.若a>b,则7﹣a<7﹣b【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a>b,∴a﹣1>b﹣1,故本选项正确;B、∵a>b,∴3a>3b,故本选项正确;C、∵a>b且c≠0,∴ac>bc,故本选项错误;D、∵a>b,∴﹣a<﹣b,∴7﹣a<7﹣b,故本选项正确.故选C.【点评】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12B.﹣=12C.﹣=4D.+12=【考点】由实际问题抽象出分式方程.【分析】设原计划每天制作x套,实际平均每天制作(x+12)套,根据实际提前4天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+12)套,由题意得,﹣=4.故选C.【点评】本题考查了有实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题11.分解因式:ax2﹣4a=a(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a,=a(x2﹣4),=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若m﹣n=3,mn=1,则m2+n2=11.【考点】完全平方公式.【分析】直接利用完全平方公式将原式变形进而将已知代入求出答案.【解答】解:∵m﹣n=3,mn=1,∴m2+n2=(m﹣n)2+2mn=32+2×1=11,故答案为:11.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.13.若记y=f(x)=,并且f(1)表示:当x=1时,y的值,即f(1)==,那么f(1)+f(2)+f()+f(3)+f()+…+f(2016)+f()=.【考点】函数值.【分析】根据已知公式分别代入计算后可得从第二项开始每两项的和均为1,据此可得答案.【解答】解:原式=+++++…++=+++++…++=+1+1+…+1=+2015=,故答案为:.【点评】本题主要考查函数的求值,根据已知公式代入后发现算式的规律是解题的关键.14.如图所示,下列结论正确的有①③④(把所有正确结论的序号都选上)①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.【考点】平行线的判定与性质.【分析】根据平行线的判定和性质解答即可.【解答】解:①若AB∥CD,则∠3=∠4;正确;②若∠1=∠BEG,则AB∥CD;错误;③若∠FGH+∠3=180°,则EF∥GH;正确④∵AB∥CD,∴∠3=∠4=62°,∵∠BEF=180°﹣∠4=118°,∵EG平分∠BEF,∴∠2=59°,∴∠1=180°﹣∠2﹣∠3=59°,正确;故答案为:①③④.【点评】本题考查了平行线的判定和性质,角平分线的定义,三角形的内角和,熟练掌握平行线的定义是解题的关键.

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功