河南省周口市2015-2016学年八年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年河南省周口市八年级(上)期末数学试卷一、选择题(每小题3分,共24分)下列各小題均有四个答案.其中只有一个是正确的,将正确答案的代号字母填入題后括号内.1.若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠02.下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4D.(﹣3a2)2=9a43.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°4.分式+可化简为()A.B.1C.﹣1D.5.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSSB.SASC.ASAD.HL6.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a(a﹣b)=a2﹣ab7.关于未知数x的方程=x﹣2的解是x=3,则a的值是()A.5B.﹣5C.1D.﹣18.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共7小题,每小题3分,满分21分)9.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为米.10.计算:(﹣3xy)÷=.11.分式拆分:=﹣.12.如图,在四边形ABCD中,∠A=90°,∠BDC=90°,AD=2,∠ADB=∠C,则点D到BC边的距离等于.13.观察等式:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16,…,则第n个式子为.14.若(x﹣2)(x+m)=x2+nx+2,则(m﹣n)mn=.15.如图,在平面直角坐标系xOy中,已知点A(0,3),点B在x轴的正半轴上,且∠ABO=30°.点C是线段OB上的动点,线段AC的垂直平分线与线段AB交于点D,则线段AD的取值范围是.三、解答题(共8小题,满分75分)16.计算:(1)(a+b)(a2﹣ab+b2)(2)(0.25x2y﹣x3y2﹣x4y3)÷(﹣0.5x2y)17.分解因式:(1)x+xy+xy2(2)(m+n)3﹣4(m+n)18.解分式方程:(1)=(2)﹣1=.19.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.20.某次列车平均提速50km/h,用相同的时间,列车提速前行驶100km,提速后比提速前多行驶40km,求提速前列车的平均速度?21.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.22.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六12345678910111213141516171819202122232425262728293031(1)计算:(12+92)﹣(22+82)=,﹣=,自己任选一个有4个数的方框进行计算(2)通过计算你发现什么规律,并说明理由.23.由于某商品的进价降低了,商家决定对该商品分两次下调销售价格.现有两种方案:方案1:第1次降价的百分率为a,第2次降价的百分率均为b方案2:第1次和第2次降价的百分率均为(1)当a≠b时,哪种方案降价幅度最多?(2)当a=b时,令a=b=x,已知第1次和第2次降价后商品销售价格分别为A、B.①填空:原销售价格可分别表示为、②已知B=A,求两次降价的百分率x.2015-2016学年河南省周口市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小題均有四个答案.其中只有一个是正确的,将正确答案的代号字母填入題后括号内.1.若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选C.2.下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4【考点】幂的乘方与积的乘方.【分析】根据积的乘方等于每一个因式分别乘方,再把所得的幂相乘,可得答案.【解答】解:A、(﹣a3)2=a6,故A选项错误;B、(﹣a3)2=a6,故B选项错误;C、(﹣3a2)2=9a4,故C选项错误;D、(﹣3a2)2=9a4,故D选项正确;故选:D.3.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°【考点】多边形内角与外角.【分析】由四边形内角和定理求出∠ABC+∠BCD=130°,由角平分线的定义求出∠OBC+∠OCB=65°,再由三角形内角和定理即可得出结果.【解答】解:∵在四边形ABCD中,∠A=140°,∠D=90°,∴∠ABC+∠BCD=360°﹣90°﹣140°=130°,∵OB平分∠ABC,OC平分∠BCD,∴∠OBC=∠ABC,∠OCB=∠BCD,∴∠OBC+∠OCB=65°,∴∠BOC=180°﹣65°=115°;故选:B.4.分式+可化简为()A.B.1C.﹣1D.【考点】分式的加减法.【分析】变形后变成同分母的分式,根据同分母的分式加减法则,分母不变,分子相加减,进行计算即可.【解答】解:原式=﹣=1,故选B.5.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSSB.SASC.ASAD.HL【考点】全等三角形的判定.【分析】根据平行线的性质得∠BAC=∠DCA,再加上公共边,则可利用“SAS”判断△ABC≌△CDA.【解答】解:∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,,∴△ABC≌△CDA(SAS).故选B.6.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a(a﹣b)=a2﹣ab【考点】平方差公式的几何背景.【分析】根据正方形和梯形的面积公式,观察图形发现这两个图形阴影部分的面积=a2﹣b2=(a+b)(a﹣b).【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.7.关于未知数x的方程=x﹣2的解是x=3,则a的值是()A.5B.﹣5C.1D.﹣1【考点】分式方程的解.【分析】把x=3代入方程即可求出a的值.【解答】解:把x=3代入方程得:=1,解得:a=﹣1,经检验a=﹣1时,分母不为0,则a的值是﹣1.故选D.8.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】因式分解的应用.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【解答】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.二、填空题(共7小题,每小题3分,满分21分)9.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为1.22×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000122=1.22×10﹣6.故答案为:1.22×10﹣6.10.计算:(﹣3xy)÷=﹣.【考点】分式的乘除法.【分析】直接利用分式的除法运算法则化简求出答案.【解答】解:(﹣3xy)÷=﹣3xy×=﹣.故答案为:﹣.11.分式拆分:=﹣.【考点】分式的加减法.【分析】设所求式子为A,则A=﹣,再通分,把分子相加减即可.【解答】解:设所求式子为A,则A=﹣=﹣==.故答案为:.12.如图,在四边形ABCD中,∠A=90°,∠BDC=90°,AD=2,∠ADB=∠C,则点D到BC边的距离等于2.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据三角形内角和定理求出∠ABD=∠DBC,根据角平分线性质得出即可.【解答】解:过D作DE⊥BC于E,则点D到BC边的距离是DE的长度,∵∠A=90°,∠BDC=90°,∠ADB=∠C,∠A+∠ADB+∠ABD=180°,∠DBC+∠C+∠BDC=180°,∴∠ABD=∠DBC,∵∠A=90°,DE⊥BC,AD=2,∴AD=DE=2,故答案为:2.13.观察等式:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16,…,则第n个式子为(n﹣1)(n+1)+1=n2.【考点】规律型:数字的变化类.【分析】根据已知式子得出各式之间是连续的自然数平方,进而得出答案.【解答】解:因:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16;所以第n个式子表达式为:(n﹣1)(n+1)+1=n2.故答案为:(n﹣1)(n+1)+1=n214.若(x﹣2)(x+m)=x2+nx+2,则(m﹣n)mn=8.【考点】多项式乘多项式.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出m与n的值,即可确定出所求式子的值.【解答】解:已知等式整理得:x2+(m﹣2)x﹣2m=x2+nx+2,可得,解得:,则(m﹣n)mn=(﹣1+3)﹣1×(﹣3)=23=8.故答案为:8.15.如图,在平面直角坐标系xOy中,已知点A(0,3),点B在x轴的正半轴上,且∠ABO=30°.点C是线段OB上的动点,线段AC的垂直平分线与线段AB交于点D,则线段AD的取值范围是2≤AD≤3.【考点】线段垂直平分线的性质;坐标与图形性质.【分析】根据线段垂直平分线的性质得到DA=DC,分点C与点B重合、DC∥OA两种情况解答即可.【解答】解:连接DC,∵线段AC的垂直平分线与线段AB交于点D,∴DA=DC,∵A(0,3),∠ABO=30°,∴AB=2OA=6,当点C与点B重合时,AD=AB=3,当DC∥OA时,AD=CD=BD,则AD=2,∴线段AD的取值范围是:2≤AD≤3,故答案为:2≤AD≤3.三、解答题(共8小题,满分75分)16.计算:(1)(a+b)(a2﹣ab+b2)(2)(0.25x2y﹣x3y2﹣x4y3)÷(﹣0.5x2y)【考点】整式的除法;多项式乘多项式.【分析】(1)直接利用单项式乘以多项式运算法则求出答案;(2)直接利用整式的除法运算法则求出答案.【解答】解:(1)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3;(2)原式=﹣+xy+x2y2.17.分解因式:(1)x+xy+xy2(2)(m+n)3﹣4(m+n)【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(1

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功