湖北省大冶市2014届九年级上期末考试数学试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

湖北省黄石市大冶市2014届九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列二次根式中,最简二次根式是()A.B.C.D.2.若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2B.2C.3D.13.若a<1,化简﹣1=()A.a﹣2B.2﹣aC.aD.﹣a4.下面四个标志图是中心对称图形的是()5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=96.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)7.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件8.若两圆的半径分别是2cm和5cm,圆心距为3cm,则这两圆的位置关系是()A.外离B.相交C.外切D.内切9.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于()A.15°B.20°C.30°D.70°10.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>bB.a<bC.a=bD.不能确定二、填空题(每小题3分,满分24分)11.若二次根式有意义,则x的取值范围是_________.12.已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是_________.13.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是_________.14.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_________.15.若扇形的圆心角为60°,弧长为2π,则扇形的半径为_________.16.如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=_________°.17.一个不透明的布袋中分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于4的概率为_________.18.已知抛物线y=k(x+1)(x﹣)与x轴交于点A、B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是_________.三、解答题19.(7分)计算:﹣×﹣(2﹣)2.20.(8分)(1)x2﹣3x=10(2)3x2﹣x﹣4=0.21.(8分)若n>0,关于x的方程x2﹣(m﹣2n)x+mn=0有两个相等的正实数根,求的值.22.(8分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.23.(8分)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.24.(8分)(2009•包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.25.(9分)如图1,已知点D在A上,△ABC和△ADE都是等腰直角三角形,点M为BC的中点(1)求证:△BMD为等腰直角三角形.(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.(3)将△ADE绕点A任意旋转一定的角度,如图3中的“△BMD为等腰直角三角形”是否均成立?说明理由.26.(10分)(2011•黄石)已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.19.解:原式=2﹣﹣3﹣(7﹣4)=2﹣﹣3﹣7+4=3﹣8.20.解:(1)方程变形得:x2﹣3x﹣10=0,即(x﹣5)(x+2)=0,可得x﹣5=0或x+2=0,解得:x1=5,x2=﹣2;(2)这里a=3,b=﹣,c=﹣4,∵△=2+48=50,∴x=,则x1=,x2=﹣.25、(1)证明:∵△ABC和△ADE都是等腰直角三角形,∴∠ACB=∠BAC=45°∠ADE=∠EBC=∠EDC=90°,∵点M为BC的中点,∴BM=EC,DM=EC,∴BM=DM,BM=CM,DM=CM,∴∠BCM=∠MBC,∠DCM=∠MDC,∴∠BME=∠BCM+∠MBC=2∠BCE,同理∠DME=2∠ACM,∴∠BMD=2∠BCM+2∠ACM=2∠BCA=2×45°=90°∴△BMD是等腰直角三角形.(2)解:如图2,△BDM是等腰直角三角形,理由是:延长ED交AC于F,∵△ADE和△ABC是等腰直角三角形,∴∠BAC=∠EAD=45°,∵AD⊥ED,∴ED=DF,∵M为EC中点,∴EM=MC,∴DM=FC,DM∥FC,∴∠BDN=∠BND=∠BAC=45°,∵ED⊥AB,BC⊥AB,∴ED∥BC,∴∠DEM=NCM,在△EDM和△CNM中∴△EDM≌△CNM(ASA),∴DM=MN,∴BM⊥DN,∴△BMD是等腰直角三角形.(3)△BDM是等腰直角三角形,理由是:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得∠DEN=∠DAN,∠NAB=∠BCM,∵CF∥ED,∴∠DEN=∠FCM,∴∠BCF=∠BCM+∠FCM=∠NAB+∠DEN=∠NAB+∠DAN=∠BAD,∴△BCF≌△BAD,∴BF=BD,∠DBA=∠CBF,∴∠DBF=∠DBA+∠ABF=∠CBF+∠ABF=∠ABC=90°,∴△DBF是等腰直角三角形,∵点M是DF的中点,则△BMD是等腰直角三角形,26、解:(1)二次函数y=x2﹣2mx+4m﹣8的对称轴是:x=m.∵当x≤2时,函数值y随x的增大而减小,而x≤2应在对称轴的左边,∴m≥2.(2)如图:顶点A的坐标为(m,﹣m2+4m﹣8)△AMN是抛物线的内接正三角形,MN交对称轴于点B,tan∠AMB=tan60°==,则AB=BM=BN,设BM=BN=a,则AB=a,∴点M的坐标为(m+a,a﹣m2+4m﹣8),∵点M在抛物线上,∴a﹣m2+4m﹣8=(m+a)2﹣2m(m+a)+4m﹣8,整理得:a2﹣a=0得:a=(a=0舍去)所以△AMN是边长为2的正三角形,S△AMN=×2×3=3,与m无关;(3)当y=0时,x2﹣2mx+4m﹣8=0,解得:x=m±=m±,∵抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,∴(m﹣2)2+4应是完全平方数,∴m的最小值为:m=2.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功