2015-2016学年湖北省孝感市安陆市九年级(上)期中数学试卷一、选择题:本大题共10小题,每题3分,共30分。在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入表中。1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个2.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2B.﹣2C.4D.﹣43.方程(x﹣5)(x﹣6)=x﹣5的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=74.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1B.a=3,b=1C.,b=﹣1D.,b=15.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解6.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为()A.8人B.9人C.10人D.11人7.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)8.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>﹣1D.﹣1<m<09.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米10.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b二、填空题:本大题共6小题,每小题3分,共18分。11.写出一个图象过原点且不经过第四象限的抛物线的解析式__________.12.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为__________度.13.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=__________,b=__________.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为__________.15.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程__________.16.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是__________(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.三、解答题:本大题共6小题,满分48分。17.用配方法解一元二次方程:x2+x﹣1=0.18.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.19.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.20.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是__________;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)__________.21.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?22.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?2015-2016学年湖北省孝感市安陆市九年级(上)期中数学试卷一、选择题:本大题共10小题,每题3分,共30分。在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入表中。1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2B.﹣2C.4D.﹣4【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=2代入方程x2=c可得c=4,故本题选C.【点评】本题考查的是一元二次方程的根即方程的解的定义.3.方程(x﹣5)(x﹣6)=x﹣5的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=7【考点】解一元二次方程-因式分解法.【分析】方程左右两边都含有(x﹣5),将其看做一个整体,然后移项,再分解因式求解.【解答】解:(x﹣5)(x﹣6)=x﹣5(x﹣5)(x﹣6)﹣(x﹣5)=0(x﹣5)(x﹣7)=0解得:x1=5,x2=7;故选D.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.4.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1B.a=3,b=1C.,b=﹣1D.,b=1【考点】根与系数的关系.【专题】计算题.【分析】先根据根与系数的关系可得x1+x2=﹣2a,x1x2=b,而x1+x2=3,x1x2=1,那么﹣2a=3,b=1,解即可.【解答】解:∵x1,x2是一元二次方程x2+2ax+b=0的两根,∴x1+x2=﹣2a,x1x2=b,∵x1+x2=3,x1x2=1,∴﹣2a=3,b=1,即a=﹣,b=1,故选D.【点评】本题考查了根与系数的关系,解题的关键是掌握根与系数的等量关系的公式.5.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【考点】根的判别式;一元一次方程的解.【分析】利用k的值,分别代入求出方程的根的情况即可.【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.【点评】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.6.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为()A.8人B.9人C.10人D.11人【考点】一元二次方程的应用.【专题】其他问题;压轴题.【分析】本题考查增长问题,应理解“增长率”的含义,如果设每轮传染中平均一个人传染的人数为x人,那么由题意可列出方程,解方程即可求解.【解答】解:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.【点评】主要考查增长率问题,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.7.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)【考点】坐标与图形变化-旋转.【分析】根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.【解答】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选B.【点评】本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.8.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>﹣1D.﹣1<m<0【考点】二次函数的性质.【专题】压轴题.【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【解答】解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.【点评】本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.9.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.米C.16米D.米【考点】二次函数的应用