湖南省郴州市2016届九年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.42.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0B.x2﹣2x+1=0C.x2﹣1=0D.x2+2x+3=03.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.4.某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min)如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80B.81C.82D.835.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是2,则△A′B′C′的面积是()A.4B.6C.8D.126.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定7.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米8.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2C.3D.4二、填空题(共8小题,每小题3分,满分24分)9.已知=,则的值为.10.一元二次方程x2﹣2x=0的解是.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.12.在△ABC中,∠C=90°,sinA=,则cosB=.13.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.14.关于x的方程(m﹣3)xm2﹣7﹣3x﹣4=0是一元二次方程,则m=.15.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..16.如图,已知函数y1=,y2=在第一象限的图象.过函数y1=的图象上的任意一点A作x轴的平行线交函数y2=的图象于点B,交y轴于点C,若△AOB的面积S=1,则k的值为.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算:2cos30°+tan45°﹣4sin260°.18.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.19.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?21.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.22.如图,郴州北湖公园的小岛上有为了纪念唐代著名诗人韩愈而建的韩愈铜像,其底部为A,某人在岸边的B处测得A在B的北偏东60°的方向上,然后沿岸边直行200米到达C处,再次测得A在C的北偏东30°的方向上(其中A,B,C在同一平面上).求这个铜像底部A到岸边BC的距离(结果精确到0.1米,参考数据:≈1.732)23.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a,b,c分別为△ABC三边长.(1)若方程有两个相等的实数根.试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.24.如图,反比例函数y=与一次函数y=k2x+b图象的交点为A(m,1),B(﹣2,n),OA与x轴正方向的夹角为α,且tanα=.(1)求反比例函数及一次函数的表达式;(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.25.如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一动点(不与点A,B重合),DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)当PD⊥AC时,求线段PA的长度;(3)当点P在线段AC的垂直平分线上时,求sin∠CPB的值.26.如图,在Rt△ABC中,AB=10cm,sinA=.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)(1)求AC,BC的长;(2)当t为何值时,△APQ的面积为△ABC面积的;(3)当t为何值时,△APQ与△ABC相似.湖南省郴州市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.4【考点】反比例函数图象上点的坐标特征.【分析】把点(﹣2,2)代入反比例函数y=(k≠0)中,可直接求k的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k≠0)中得2=所以,k=xy=﹣4,故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.2.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0B.x2﹣2x+1=0C.x2﹣1=0D.x2+2x+3=0【考点】根的判别式.【分析】直接利用根的判别式的知识分别对各选项进行分析求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,∴有不相等的实数根;B、∵△=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴有相等的实数根;C、∵△=b2﹣4ac=02﹣4×1×(﹣1)=4>0,∴有不相等的实数根;D、∵△=b2﹣4ac=22﹣4×1×3=﹣8<0,∴没有实数根.故选D.【点评】此题考查了根的判别式.注意△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.3.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】直接根据三角函数的定义求解即可.【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA==.故选A.【点评】此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.4.某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min)如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80B.81C.82D.83【考点】用样本估计总体;加权平均数.【分析】根据平均数的定义解答即可.【解答】解:(75+80+85+65+95+80+85+85+80+90)÷10=82,故选C【点评】本题考查数据的分析.解题的关键是理解平均数的意义.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是2,则△A′B′C′的面积是()A.4B.6C.8D.12【考点】位似变换.【分析】利用位似比得出三角形面积比,进而得出答案.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,∴=,∵△ABC的面积是2,∴△A′B′C′的面积是:8.故选:C.【点评】此题主要考查了位似变换,利用位似比得出面积比是解题关键.6.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】把点A、B、C的坐标分别代入函数解析式,求得y1、y2、y3的值,然后比较它们的大小.【解答】解:∵点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,∴y1=﹣=5,y2=﹣=﹣5,y3=﹣=﹣2.5.∵﹣5<﹣2.5<5,∴y2<y3<y1故选B.【点评】本题考查了反比例函数图象上点的坐标特征.函数图象上点坐标都满足该函数解析式.7.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意,在Rt△ABO中,BO=30米,∠ABO为α,利用三角函数求解.【解答】解:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数求解.8.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2C.3D.4【考点】相似三角形的判定与性质;翻折变换(折叠问题).【专题】计算题.【分析】△ABC沿DE折叠,使点A落在点A′处,可得∠DEA=∠DEA′=90°,AE=A′E,所以,△ACB∽△AED,A′为CE的中点,所以,可运用相似三角形的性质求得.【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴DE∥BC∴△ACB∽△AED,又A′为CE的中点,∴AE=A′E=A′C=AC,∴,即,∴ED=2.故选:B.【点评】本题考查了翻折变换和相似三角形的判定与性质,翻折变换后的图形全等及两三角形相似,各边之比就是相似比.二、填空题(共8小题,每小题3分,满分24分)9.已知=,则的值为.【考点】比例的性质.【分析】根据比例的性质,可得5a与6b的关系,根据等式的性质,可得答案.【解答】解:由比例的性质,得5a=6b.两边都除以6a,得=,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,等式的性质.10.一元二次方程x2﹣2x=0的解是x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】本题应对方程左边进行变形,提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【