黄梅实验学校2016-2017学年八年级上期中测试题含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2016年秋八年级(上)期中考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分。将答案填在表格内。1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC5.三角形中,到三边距离相等的点是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点6.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30°B.35°C.40°D.50°7.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°8.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形9.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.1010.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共10小题,每小题3分,共30分。11.等腰三角形的两边分别为1和2,则其周长为__________.12.点A(2,﹣1)关于x轴对称的点的坐标是__________.13.△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=__________.14.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,只需增加一个条件是__________(只需添加一个你认为适合的)15.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①,②两部分,将①展开后,得到的多边形是__________.16.在△ABC中,点D是BC边上的中点,如果AB=10厘米,AC=12厘米,则△ABD和△ACD的周长之差为__________,面积之差为__________.17.如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为__________.18.在△ABC中,∠A=34°,∠B=72°,则与∠C相邻的外角为__________.19.一个多边形的一个顶点出发有5条对角线,这是一个__________边形.20.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.三、解答题:本大题共10小题,共40分。21.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)22.如图,已知△ABC中,AB=AC,AD⊥BC于点D,若△ABC、△ABD的周长分别为20cm、16cm,求AD的长.23.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.24.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.25.如图,已知在Rt△ABC中,AB=AC,∠BAC=90°,AN是过点A的任一直线,BD⊥AN于点D,CE⊥AN于点E.求证:BD﹣CE=DE.26.如图,A、B两村和一条小河,要在河边L建一水厂Q向两村供水,若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述情况下的自来水厂厂址标出,并保留作图痕迹.27.如图,△ABC中,∠ABC与∠ACB的角平分线交于点F,过点F作DE∥BC,交AB于D,交AC于点E.求证:DE=DB+EC.28.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.29.如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.30.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2016年秋八年级(上)期中考试数学试卷答案一、选择题:本大题共10小题,每小题3分,共30分。将答案填在表格内。1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故选C.【点评】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能组成三角形;C、2+5<8,不能组成三角形;D、4+5>6,能够组成三角形.故选D.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC【考点】全等三角形的性质.【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选C.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等.5.三角形中,到三边距离相等的点是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等解答.【解答】解:三角形中,到三边距离相等的点是三条角平分线的交点.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.6.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30°B.35°C.40°D.50°【考点】平行线的性质;翻折变换(折叠问题).【专题】探究型.【分析】先根据平行线的性质求出∠BFE的度数,再由图形翻折变换的性质求出∠EFG的度数,根据平角的定义即可得出∠1的度数.【解答】解:∵AD∥BC,∠AEF=110°,∴BFE=180°﹣∠AEF=180°﹣110°=70°,∵长方形ABCD沿EF对折后使两部分重合,∴∠EFG=∠BFE=70°,∴∠1=180°﹣∠BFE﹣∠EFG=180°﹣70°﹣70°=40°.故选C.【点评】本题考查的是平行线的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.7.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°【考点】等腰三角形的性质.【分析】分别从此等腰三角形是锐角三角形与钝角三角形去分析求解即可求得答案.【解答】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°﹣∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°﹣∠ABD=30°,∴∠BAC=180°﹣∠BAD=150°;∴顶角的度数为30°或150°.故选B.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.8.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【考点】三角形的稳定性.【分析】稳定性是三角形的特性.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.【点评】稳定性是三角形的特性,这一点需要记忆.9.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.10【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于n的方程,解方程就可以求出多边形的边数.【解答】解:由题意可得:(n﹣2)×180°=1080°,解得n=8.故选:B.【点评】考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.【分析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFC)=180°﹣120°=60°.故选D.【点评】主要考查了等腰三角形的性质及三角形内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.二、填空题:本大题共10小题,每小题3分,共30分。11.等腰三角形的两边分别为1和2,则其周长为5.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分1是腰长与底边两种情况讨论求解.【解答】解:①1是腰长时,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形;②1是底边时,三角形的三边分别为1、2、2,能组成三角形,周长=1+2+2=5,综上所述,三角形的周长为5.故答案为:5.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.12.点A(2,﹣1

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功