济宁市微山县2016-2017学年八年级上期中数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2016-2017学年山东省济宁市微山县八年级(上)期中数学试卷一、选择题:(本大题共l0个小题.每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BFB.∠ACE=∠ACBC.AE=BED.CD⊥BE3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.若一个三角形三个内角度数的比为l:2:3,那么这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形5.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A.8条B.9条C.10条D.11条6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则么∠B的度数为()A.30°B.40°C.36°D.45°7.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SASB.ASAC.AASD.SSS8.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)9.如图,已知在△ABC中,艘上AB于R,PS上AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;(A)BP=CP.其中结论正确的有()A.全部正确B.仅①②③正确C.仅①②正确D.仅①④正确10.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共5个小题;每小题3分,共l5分.把答案写在题中横线上)11.已知等腰三角形的一个角为80°,则顶角为.12.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为.三、解答题(本大题共7个小题,共55分.解答应写出证明过程或演算步骤)16.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.17.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.18.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.19.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.20.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.21.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.22.如图,CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠a.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图l,若∠BCA=90°,∠a=90°,则BECF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图(2),若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).2016-2017学年山东省济宁市微山县八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共l0个小题.每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是三角形具有稳定性.故选:C.【点评】数学要学以致用,会对生活中的一些现象用数学知识解释.2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BFB.∠ACE=∠ACBC.AE=BED.CD⊥BE【考点】三角形的角平分线、中线和高.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选C.【点评】考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个三角形三个内角度数的比为l:2:3,那么这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°,∴k°=30°,2k°=60°,3k°=90°,所以这个三角形是直角三角形.故选D.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.5.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A.8条B.9条C.10条D.11条【考点】多边形的对角线;多边形内角与外角.【专题】常规题型.【分析】先求出多边形的外角度数,然后即可求出边数,再利用公式(n﹣3)代入数据计算即可.【解答】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12,∴对角线条数=12﹣3=9.故选B.【点评】本题主要考查了多边形的外角与对角线的性质,求出边数是解题的关键,另外熟记从多边形的一个顶点出发可作的对角线的条数公式也很重要.6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则么∠B的度数为()A.30°B.40°C.36°D.45°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵CD=AD,AB=BD,∴∠B=∠C=∠CAD,∠ADB=∠BAD,∴∠B+∠C+BAC=∠B+∠B+2∠B+∠B=180°,∴∠B=36°,故选C.【点评】此题考查了等腰三角形的性质与三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.7.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SASB.ASAC.AASD.SSS【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,利用SSS得到三角形全等,由全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选D.【点评】本题考查的是作图﹣基本作图,全等三角形的判定与性质等知识,熟练掌握三角形全等的性质是正确解答本题的关键.8.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.9.如图,已知在△ABC中,艘上AB于R,PS上AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;(A)BP=CP.其中结论正确的有()A.全部正确B.仅①②③正确C.仅①②正确D.仅①④正确【考点】全等三角形的判定与性质.【分析】由HL证明Rt△APR≌Rt△APS,得出AR=AS,∠PAR=∠PAS,由已知得出∠PAR=∠2,得出PQ∥AB,当BP=CP时,△BPR≌△CPS,得出①②正确,③④不正确即可.【解答】解:∵PR⊥AB,PS⊥AC,∴∠PRA=∠PSA=90°,在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS(HL),∴AR=AS,∠PAR=∠PAS,∵∠1=∠2,∴∠PAR=∠2,∴PQ∥AB,当BP=CP时,△BPR≌△CPS,∴①②正确,③④不正确;故选:B.【点评】本题考查了全等三角形的判定与性质、平行线的判定;证明三角形全等是解决问题的关键.10.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SA

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功