2015-2016学年四川省资阳市简阳市镇金学区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)3.如图,点P为▱ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为s1、s2和s3,则它们之间的大小关系是()A.S3=S1+S2B.2S3=S1+S2C.S3>S1+S2D.S3<S1+S24.现有甲、以两支解放军小分队将救灾物资送往某灾区小镇,从部队基地到该小镇只有唯一通道,且路程长为24km,甲小队先出发,如图是他们行走的路程与时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数为()A.1B.2C.3D.45.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣16.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处C.Q处D.M处7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=()A.B.C.D.﹣8.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y19.函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C最多有()A.1个B.2个C.3个D.4个二、填空题:(每题3分,共18分)11.已知关于x的方程=3的解是正数,则m的取值范围是.12.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.13.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.14.▱ABCD的周长为40cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多4cm,则AB=cm,BC=cm.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是,点Bn的坐标是.16.如图,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2,G为矩形对角线的交点,经过点G的双曲线与BC相交于点M,则CM:MB=.三、解答题:(共52分)17.(1)计算:;(2)计算:;(3)解方程:.18.先化简,再选择使原式有意义而你又喜欢的数代入求值.19.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.20.阅读下面的对话.小红:“售货员,我要买些梨.”售货员说:“小红,你上次买的那种梨卖完了,我们还没来得及进货,我建议你这次买些新进的苹果,价格比梨贵一点,不过这批苹果的味道挺好哟!”小红:“好,这次和上次一样,也花30元.”对照前后两次的电脑小票,小红发现,每千克苹果的单价是梨的1.5倍,买的苹果的重量比梨轻2.5Kg.试根据上面的对话和小红的发现,分别求出苹果和梨的单价.21.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=的图象交于点A(﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.(1)求一次函数y1=kx+b与反比例函数y2=的函数关系式;(2)连结OA、OC,求△AOC的面积;(3)当x取何值时y1=kx+b的值大于反比例函数y2=的值.2015-2016学年四川省资阳市简阳市镇金学区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.2.在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)【考点】平行四边形的性质;坐标与图形性质.【分析】根据题意画出图形,进而得出C点横纵坐标得出答案即可.【解答】解:如图所示:∵▱ABCD的顶点A(0,0),B(5,0),D(2,3),∴AB=CD=5,C点纵坐标与D点纵坐标相同,∴顶点C的坐标是;(7,3).故选:C.3.如图,点P为▱ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为s1、s2和s3,则它们之间的大小关系是()A.S3=S1+S2B.2S3=S1+S2C.S3>S1+S2D.S3<S1+S2【考点】平行四边形的性质.【分析】设平行四边形的高为h,然后分别表示出s1、s2和s3,即可得出三者的关系.【解答】解:设平行四边形的高为h,则S1=×AP×h,S2=PD×h,S3=BC×h,又平心四边形的对边相等,∴AP+PD=AD=BC,∴S3=S1+S2.故选:A.4.现有甲、以两支解放军小分队将救灾物资送往某灾区小镇,从部队基地到该小镇只有唯一通道,且路程长为24km,甲小队先出发,如图是他们行走的路程与时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数为()A.1B.2C.3D.4【考点】一次函数的应用.【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:两个图象的交点处即为两队相遇,时间为4.5小时,此时乙走了4.5﹣2=2.5小时,故(1)的说法正确,其定②③④也都对,故选D5.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.6.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处C.Q处D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=()A.B.C.D.﹣【考点】解分式方程.【分析】根据新定义得到﹣=1,然后把方程两边都乘以2(2x﹣1)得到2﹣(2x﹣1)=2(2x﹣1),解得x=,然后进行检验即可.【解答】解:∵2⊕(2x﹣1)=1,∴﹣=1,去分母得2﹣(2x﹣1)=2(2x﹣1),解得x=,检验:当x=时,2(2x﹣1)≠0,故分式方程的解为x=.故选:A.8.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】判断出各个点所在的象限,根据反比例函数的增减性可得其中两组点的大小关系,进而比较同一象限点的大小关系即可.【解答】解:由题意,得点(x1,y1)、(x2,y2)在第二象限,(x3,y3)在第四象限,∴y3最小,∴x1<x2,∴y1<y2,∴y3<y1<y2.故选B.9.函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m>0.由直线经过一、二、四象限得m<0.错误;B、由双曲线在二、四象限,得m<0.由直线经过一、二、三象限得m>0.错误;C、正确;D、由双曲线在二、四象限,得m<0.由直线经过二、三、四象限得m>0.错误.故选C.10.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C最多有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定;一次函数图象上点的坐标特征.【分析】首先根据题意,求得A与B的坐标,然后利用勾股定理求得AB的长,再分别从AB=BC,AB=AC,AC=BC去分析求解,即可求得答案.【解答】解:∵当x=0时,y=4,当y=0时,x=﹣3,∴A(﹣3,0),B(0,4),∴AB==5,①当AB=BC时,OA=OC,∴C1(3,0);②当AB=AC时,C2(﹣8,0),C3(2,0),③当AC=BC时,C4(,0),∴这样的点C最多有4个.故选D.二、填空题:(每题3分,共18分)11.已知关于x的方程=3的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】分式方程的解.【分析】首先求出关于x的方程=3的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.12.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.13.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.14.▱ABCD的周长为40cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多4cm,则AB=12cm,BC=8cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多4cm,则AB比BC大4cm,继而可求出AB、BC的长度.【解答】解:∵平行四边形的周长为40cm,∴BC+AB=20cm;又∵△AOB的周长比△BOC的周长多4cm,∴AB﹣BC=4cm,则AB=12cm,BC=8cm.故答案为:12,8.15.正方形A1B1C