2016-2017学年广东省江门市新会区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.若分式有意义,则x的取值范围是()A.x≠0B.C.D.3.下列运用平方差公式计算,错误的是()A.(a+b)(a﹣b)=a2﹣b2B.(x+1)(x﹣1)=x2﹣1C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣44.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A.x﹣2yB.x+2yC.x﹣2y﹣1D.x﹣2y+15.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN6.给出下列计算,其中正确的是()A.a5+a5=a10B.(2a2)3=6a6C.a8÷a2=a4D.(a3)4=a127.下列长度的三线段,能组成等腰三角形的是()A.1,1,2B.2,2,5C.3,3,5D.3,4,58.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3B.4C.5D.89.化简的结果为()A.﹣1B.1C.D.10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°二、填空题(本题共6小题,每小题4分,共24分)11.若分式的值为0,则实数x的值为.12.若3x=8,3y=4,则3x﹣y的值是.13.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=.14.分解因式:a2﹣4b2=.15.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为.16.一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为cm.三、解答题(本题共3小题,每小题6分,共18分)17.分解因式:a3﹣4a2+4a.18.计算:•+(3x+1)19.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.四、解答题(本题共3小题,每小题7分,共21分)20.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠BEC的度数.(2)若CE=5,求BC的长.21.如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:(1)△ABD≌△ACE;(2)△ADE为等边三角形.22.已知(x+y)2=25,xy=,求x﹣y的值.五、解答题(本题共3小题,每小题9分,共27分)23.在争创全国卫生城市的活动中,我区“义工队”义务清运一堆重达100吨的垃圾,清运了25吨后因附近居民主动参与到义务劳动中,使清运的速度比原来提高了一倍,前后共用5小时就完成清运,请你求出义工队原计划每小时清运多少吨垃圾?24.已知:如图,∠B=90°,AB∥DF,AB=4cm,BD=10cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.(1)如图1试说明:∠ACB=∠CED.(2)若AC=CE,试求DE的长.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?并给予证明.2016-2017学年广东省江门市新会区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.若分式有意义,则x的取值范围是()A.x≠0B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件可得1﹣2x≠0,再解即可.【解答】解:由题意得:1﹣2x≠0,解得:x≠,故选:B.3.下列运用平方差公式计算,错误的是()A.(a+b)(a﹣b)=a2﹣b2B.(x+1)(x﹣1)=x2﹣1C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣4【考点】平方差公式.【分析】根据两数和乘以这两个数的差,等于这两个数的平方差,可得答案.【解答】解:(2x+1)(2x﹣1)=(2x)2﹣1,故C错误.故选:C.4.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A.x﹣2yB.x+2yC.x﹣2y﹣1D.x﹣2y+1【考点】整式的除法.【分析】由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.【解答】解:(x2﹣2xy+x)÷x=x2÷x﹣2xy÷x+x÷x=x﹣2y+1.故选:D.5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.6.给出下列计算,其中正确的是()A.a5+a5=a10B.(2a2)3=6a6C.a8÷a2=a4D.(a3)4=a12【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.7.下列长度的三线段,能组成等腰三角形的是()A.1,1,2B.2,2,5C.3,3,5D.3,4,5【考点】等腰三角形的判定;三角形三边关系.【分析】根据三角形三边关系以及等腰三角形的判定分别分析得出即可.【解答】解:A、∵1+1=2,无法构成三角形,故此选项错误;B、∵2+2<5,无法构成三角形,故此选项错误;C、∵3+3>5,3=3,故组成等腰三角形,此选项正确;D、∵3,4,5没有相等的边,不是等腰三角形,故此选项错误.故选:C.8.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3B.4C.5D.8【考点】多边形内角与外角;多边形.【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:=8,故选D.9.化简的结果为()A.﹣1B.1C.D.【考点】分式的加减法.【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【解答】解:=﹣==1;故选B.10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.二、填空题(本题共6小题,每小题4分,共24分)11.若分式的值为0,则实数x的值为1.【考点】分式的值为零的条件.【分析】分式的值等于零:分子等于零,且分母不等于零.【解答】解:由题意,得x2﹣1=0,且x+1≠0,解得,x=1.故填:1.12.若3x=8,3y=4,则3x﹣y的值是2.【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=8÷4=2,故答案为:2.13.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=45°.【考点】全等三角形的性质.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.14.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解-运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).15.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为22.【考点】线段垂直平分线的性质.【分析】由BC边的垂直平分线交AB,根据线段垂直平分线的性质,可得BE=CE,又由△ACE的周长为12,即可得AB+AC=12,继而求得答案.【解答】解:∵BC边的垂直平分线交AB,∴BE=CE,∵△ACE的周长为12,∴AC+AE+CE=AC+AE+BE=AC+AB=12,∵BC=10,∴△ABC的周长为:AB+AC+BC=22.故答案为:22.16.一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为7cm.【考点】完全平方公式的几何背景.【分析】设正方形的边长是xcm,根据面积相应地增加了32cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=32,解得:x=7.故答案为:7.三、解答题(本题共3小题,每小题6分,共18分)17.分解因式:a3﹣4a2+4a.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣4a+4)=a(a﹣2)2.18.计算:•+(3x+1)【考点】分式的混合运算.【分析】结合分式混合运算的运算法则进行求解即可.【解答】解:•+(3x+1)=•+(3x+1)=x(x﹣1)+(3x+1)=x2﹣x+3x+1=x2+2x+1.19.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.【考点】作图-轴对称变换.【分析】(1)由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端