江西省高安市2017-2018学年八年级数学上期中试题含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

江西省高安市2017-2018学年八年级数学上学期期中试题一、选择题(每题3分,共18分)1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.若△ABC的边长都是整数,周长为12,且有一边长为4,则这个三角形的最大边长为()A.7B.6C.5D.84.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.14B.15C.16D.175.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°第4题图第5题图第6题图6.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①③④B.①③C.②④D.①②③二、填空题(每空3分,共18分)7.点(2,3)M关于x轴对称的点的坐标是.8.如图,BC⊥ED于点M,∠A=27°,∠D=20°,则∠ABC=______.9.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是.第8题图第9题图第10题图第11题图10.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.11.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.12.如右图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①AD=BE;②PQ∥AE;③DE=DP;④AP=BQ恒成立的结论有______.(把你认为正确的序号都填上)三、解答题(本大题共5小题,每小题6分,共30分)13.在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为格点A,其余顶点从格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.14.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.15.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.16.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.17.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.四、(本大题共3小题,每小题8分,共24分)18.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.19.如图,在所给网络图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB+PC最小;(3)求△ABC的面积.20.如图,90CDECED,EM平分CED,并与CD边交于点M.DN平分CDE,并与EM交于点N.(1)依题意补全图形,并猜想EDNNED的度数等于;(2)证明以上结论.证明:∵DN平分CDE,EM平分CED,∴12EDNCDE,NED=.(理由:)∵90CDECED,∴EDNNED=×(∠+∠)=×90°=°.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,(1)若∠A=40°,∠B=60°,求∠DCE的度数.(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)22.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.六、(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.八年级数学期中试卷参考答案一选择题1、D2、B3、C4、B5、B6、D二填空题7、(-2,-3)8、43°9、三角形具有稳定性10、611、312①②④三解答题13、任选1个14、证明:(1)∵AE=CF,∠ABC=∠CBF=90°,AB=BC,∴△ABE≌△CBF(2)解:∵AB=BC,∠ABC=90°,∠CAE=25°,∴∠EAB=45°﹣25°=20°.∵△ABE≌△CBF,∴∠EAB=∠FCB=20°∴∠ACF=45°+20°=65°.15、证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP,∴∠AOB=∠COD,在△AOB和△COD中,所以△AOB≌△COD,所以AB=CD。16、(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.17、∵∠1=∠3+∠C∠1=100°∠C=80°∴∠3=20°∴∠2=1/2∠3=10°∴∠BAC=∠2+∠3=30°∴∠CBA=180°-∠C-∠BAC=70°∵BE平分∠CBA∴∠EBA=1/2∠CBA=35°∴∠4=∠EBA+∠2=45°18、解:在等边三角形中,.所以.因为△为等边三角形,所以.因为,所以.所以.在△和△中,所以△△.所以.同理可证:.所以.19、(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点P即为所求;(3)△ABC的面积为:×2×4=4.20、证明:∵DN平分,EM平分,∴,∵,∴21、解:(1)∵△ABC中,∠A=40°,∠B=60°,∴∠ACB=80°,又∵CD是∠ACB的角平分线,CE是AB边上的高,∴∠ACD=∠ACB=40°,∠ACE=90°﹣∠A=50°,∴∠DCE=∠ACE﹣∠ACD=50°﹣40°=10°;(2)∵△ABC中,∠A=m,∠B=n,∴∠ACB=180°﹣m﹣n,又∵CD是∠ACB的角平分线,CE是AB边上的高,∴∠ACD=∠ACB=,∠ACE=90°﹣∠A=90°﹣m,∴∠DCE=∠ACE﹣∠ACD=(90°﹣m)﹣=.故答案为:22、解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD.∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD23、(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y-12,NB=36-2y,CM=NB,y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形,此时M、N运动的时间为16秒.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功