2012-2013学年山东省德州市乐陵市丁武中学八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)在式子中,分式的个数为()A.2个B.3个C.4个D.5个考点:分式的定义.3804980分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,,这3个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选B.点评:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.2.(3分)(2006•漳州)下列运算正确的是()A.B.C.D.考点:分式的基本性质.3804980分析:根据分式的基本性质逐项进行判断,选择正确答案.解答:解:A、,故A错误;B、C分式中没有公因式,不能约分,故B、C错误;D、=,故D正确.故选D.点评:对分式的化简,正确理解分式的基本性质是关键,约分时首先要把分子、分母中的式子分解因式.3.(3分)若A(a,b)、B(a﹣1,c)是函数的图象上的两点,且a<0,则b与c的大小关系为()A.b<cB.b>cC.b=cD.无法判断考点:反比例函数图象上点的坐标特征;反比例函数的性质.3804980分析:比例系数为﹣1,a<0,易得两点均在第二象限,那么根据y随x的增大而增大可得到相应的y的值的大小.解答:解:∵k=﹣1<0,∴函数的两个分支在二四象限;∵a<0,∴a﹣1<a<0,∴b>c.故选B.点评:解决本题的关键是判断出函数所在的象限及两点是否在同一象限,用到的知识点为:k<0,图象分支在二四象限,在每个象限内,y随x的增大而增大.4.(3分)如图,已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为()A.2B.C.2D.4考点:反比例函数与一次函数的交点问题;三角形的面积.3804980专题:数形结合.分析:本题可以先求出A点坐标,再由OA=OB求出B点坐标,则S△AOB=|xB||yA|即可求出.解答:解:点A是函数y=x与y=的图象在第一象限内的交点,则x=,x=2,A(2,2),又∵OA=OB=,∴B(﹣,0),则S△AOB=|xB||yA|=××2=.故选C.点评:本题考查了由函数图象求交点坐标,并求点之间连线所围成图形的面积的方法.5.(3分)如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1B.C.D.2考点:翻折变换(折叠问题);勾股定理;解直角三角形.3804980专题:计算题.分析:利用翻折变换及勾股定理的性质.解答:解:∵∠A=30°,∠C=90°,∴∠CBD=60°.∵将∠A沿DE折叠,使点A与点B重合,∴∠A=∠DBE=∠EBC=30°.∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,∴△BCE≌△BDE.∴CE=DE.∵AC=6,∠A=30°,∴BC=AC×tan30°=2.∵∠CBE=30°.∴CE=2.即DE=2.故选D.点评:考查了学生运用翻折变换及勾股定理等来综合解直角三角形的能力.6.(3分)△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;三角形内角和定理.3804980分析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.解答:解;①∠A=∠B﹣∠C,∠A+∠B+∠C=180°,解得∠B=90°,所以是直角三角形;②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故不是直角三角形;③∵a2=(b+c)(b﹣c),∴a2+c2=b2,根据勾股定理的逆定理是直角三角形;④∵a:b:c=5:12:13,∴a2+b2=c2,根据勾股定理的逆定理是直角三角形.故选C.点评:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.7.(3分)一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④考点:平行四边形的判定.3804980分析:一组对边平行,一组对角相等可推出两组对角分别相等,可判定为平行四边形一组对边平行,一条对角线被另一条对角线平分,可利用全等得出这组对边也相等,可判定为平行四边形一组对边相等,一条对角线被另一条对角线平分,所在的三角形不能得出一定全等,所以能判定为平行四边形.解答:解:根据平行四边形的判定,能满足是平行四边形条件的有:①,②、④,而③无法判定.故选C.点评:本题考查了平行四边形的判定,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°考点:菱形的性质.3804980分析:依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=100°,∠CDE=∠ADC﹣∠ADE,从而求解.解答:解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.点评:本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.9.(3分)某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.众数是80B.平均数是80C.中位数是75D.极差是15考点:算术平均数;中位数;众数;极差.3804980分析:根据平均数,中位数,众数及极差的概念进行判断.解答:解:将6名同学的成绩从小到大排列,第3、4个数都是80,故中位数是80,∴答案C是错误的.故选C.点评:本题重点考查平均数,中位数,众数及极差的概念及其求法.10.(3分)某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是()A.33吨B.32吨C.31吨D.30吨考点:算术平均数;折线统计图.3804980专题:图表型.分析:从统计图中得到数据,再运用求平均数公式:即可求出.解答:解:由折线统计图知,这6天的平均用水量为:(吨).故答案为B.点评:本题考查的是折线统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键;折线统计图表示的是事物的变化情况.11.(3分)如图,直线y=kx(k>0)与双曲线y=交于A,B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD=.其中正确结论的个数为()A.1个B.2个C.3个D.4个考点:反比例函数系数k的几何意义.3804980分析:根据反比例函数的对称性、函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|及三角形中位线的判定作答.解答:解:①反比例函数与正比例函数若有交点,一定是两个,且关于原点对称,所以正确;②根据A、B关于原点对称,S△ABC为即A点横纵坐标的乘积,为定值1,所以正确;③因为AO=BO,OD∥BC,所以OD为△ABC的中位线,即D是AC中点,所以正确;④在△ADO中,因为AD和y轴并不垂直,所以面积不等于k的一半,即不会等于,所以错误.故选C.点评:此题主要考查了反比例函数中比例系数k的几何意义,难易程度适中.12.(3分)如图,在直角梯形ABCD中,∠ABC=90°,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30°;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()A.①②③B.②③④C.①③④D.①②③④考点:直角梯形.3804980专题:压轴题.分析:根据梯形的性质和直角三角形中的边角关系,逐个进行验证,即可得出结论.解答:解:在直角三角形ABC中,∵AB=,BC=3,∴tan∠ACB=.∴∠ACB=30°.∴∠BAC=60°,AC=2AB=2.②是正确的∵AD∥BC,AE∥CD,∴四边形ADCE是平行四边形.∴CE=AD=2.∴BE=1.在直角三角形ABE中,tan∠BAE=,∠BAE=30°.∴∠CAE=30°.①是正确的∴AE=2BE=2.∵AE=CE,∴平行四边形ADCE是菱形.∴∠DCE=∠DAE=60°.∴∠BAE=30°又∵∠CAE=30°∴∠BAO=60°又∵AB=AO∴△AOB是等边三角形,∴∠ABO=60°.∴∠OBE=30°.∴BO⊥CD.④是正确的.∵AD∥BC,AD=2BE.∴S△ADC=2S△ABE,③是正确的.∴①②③④都是正确的,故选D.点评:此题综合运用了直角三角形的性质以及菱形的性质.注意两条平行线间的距离处处相等.二、填空题(每小题3分,共18分)13.(3分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是10.考点:中位数;算术平均数;众数.3804980分析:众数可能是10,也可能是8,因此应分众数是10或者众数是8两种情况进行讨论.解答:解:当众数是10时,∵众数与平均数相等,∴(10+10+8+x)=10,解得:x=12.这组数据为:8,10,10,12,∴中位数为10.当众数是8时,此时x必须等于8,此时众数与它的平均数不相等,故不符合题意.所以这组数据中的中位数是10.故答案为:10.点评:本题考查了中位数及众数的知识,解答本题的关键是掌握众数、中位数的定义,属于基础题.14.(3分)观察式子:,…,根据你发现的规律知,第8个式子为﹣.考点:规律型:数字的变化类.3804980专题:规律型.分析:观察可知,分子的规律是b的指数是连续的奇数,则第8个式子的分子是b17,分母的规律是a的指数是连续的自然数,则第8个式子的分母是a8,符号规律是奇数个式子时为正,第偶数个式子时为负,所以第8个式子为﹣.解答:解:通过观察可知:分子的指数为连续的奇数,所以第8个式子的分子是b17;分母的指数是连续的自然数,所以第8项的分母是a8.又因为式子是正、负交错,所以第8项为负.所以第8项式子为﹣.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.15.(3分)已知梯形的中位线长10cm,它被一条对角线分成两段,这两段的差为4cm,则梯形的两底长分别为6cm,14cm.考点:梯形中位线定理;三角形中位线定理.3804980分析:根据梯形的中位线定理得:梯形的两底和是20,再结合已知条件,知:它所分成的两段正好是三角形的中位线,根据三角形的中位线定理得下底与上底的差是8,从而不难求得梯形上下底的长.解答:如图,梯形ABCD,中位线EF长为10,GF﹣EG=4,求AD与BC的长.解:∵AD∥BC,EF为中位线∴EG=AD,GF=BC∵GF﹣EG=4∴BC﹣AD=8∵BC+AD=2EF=20∴BC=14,AD=6.点评:考查了梯形的中位线定理和三角形的中位线定理.16.(3分)(2011•南通模拟)如图,直线y=﹣x+b与双曲线y=﹣(x<0)交于点A,与x轴交于点B,则OA2﹣OB2=2.考点:反比例函数综合题.3804980专题:压轴题.分析:由直线y=﹣x+b与双曲线y=﹣(x<0)交于点A可知:x+y=b,xy=﹣1,又OA2=x2+y2