2015-2016学年辽宁省鞍山市九年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.在函数y=(x+1)2+3中,y随x增大而减小,则x的取值范围为()A.x>﹣1B.x>3C.x<﹣1D.x<32.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为()A.B.C.D.3.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°4.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)5.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0C.m<1D.m<1且m≠06.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)7.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠BB.∠APC=∠ACBC.D.8.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(每小题3分,共24分)9.将抛物线y=x2图象向右平移2个单位再向下平移3个单位,所得图象的解析式为.10.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.11.如图所示,△ABC中,DE∥BC,AE:EB=2:3,若△AED的面积是4m2,则四边形DEBC的面积为.12.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.13.反比例函数的图象经过点P(﹣1,3),则此反比例函数的解析式为.14.如图,正方形ABCD的面积为3,点E是DC边上一点,DE=1,将线段AE绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为.15.如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为,则点P的坐标为.16.如图,点P1(x1,y1),点P2(x2,y2),P3(x3,y3)都在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,都是等腰直角三角形,斜边OA3,A1A2,A2A3都在x轴上,已知点P1的坐标为(1,1),则点P3的坐标为.三、(每题8分,共16分)17.解方程:2x2+3x﹣5=0.18.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).四、(每题10分,共20分)19.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABCM的面积.20.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若x1,x2是关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0的两根,且+=2x1x2+1,求m的值.五、(每题10分,共20分)21.已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连结OD,AC.(1)求证:∠B=∠DCA;(2)若tanB=,OD=,求⊙O的半径长.六、(每题10分,共20分)23.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?24.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.七、(本题12分)25.如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.(1)如图1,若∠BAC=60°,求的值;(2)如图2,CF⊥AB于F,交BD于G,求证:CG=FG八、(本题14分)26.已知:在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A(1)求抛物线的表达式及顶点A的坐标;(2)点P为抛物线对称轴上一点,联结OA、OP.①当OA⊥OP时,求OP的长;②过点P作OP的垂线交对称轴右侧的抛物线于点B,联结OB,当∠OAP=∠OBP时,求点B的坐标.2015-2016学年辽宁省鞍山市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在函数y=(x+1)2+3中,y随x增大而减小,则x的取值范围为()A.x>﹣1B.x>3C.x<﹣1D.x<3【考点】二次函数的性质.【分析】由条件可知二次函数的对称轴为x=﹣1,且开口向上,可得出答案.【解答】解:∵y=(x+1)2+3,∴二次函数开口向上,且对称轴为x=﹣1,∴当x<﹣1时,y随x增大而减小,故选C.【点评】本题主要考查二次函数的增减性及对称轴,掌握在y=a(x﹣h)2+k中二次函数的对称轴为x=h是解题的关键.2.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为()A.B.C.D.【考点】反比例函数系数k的几何意义.【专题】数形结合.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.【解答】解:由题意得:|k|=2S△AOT=8;又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.3.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°【考点】圆周角定理;正多边形和圆.【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.【解答】解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.4.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】首先利用平移变化规律得出P1(1,3),进而利用关于原点对称点的坐标性质得出P2的坐标.【解答】解:∵点P(﹣2,3)向右平移3个单位得到点P1,∴P1(1,3),∵点P2与点P1关于原点对称,∴P2的坐标是:(﹣1,﹣3).故选:C.【点评】此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.5.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0C.m<1D.m<1且m≠0【考点】根的判别式;根与系数的关系.【专题】判别式法.【分析】先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.【解答】解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.【点评】此题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,根与系数的关系是x1+x2=﹣,x1x2=.6.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)【考点】坐标与图形变化-旋转;等边三角形的性质.【专题】几何图形问题.【分析】设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.【解答】解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,又∵A1在第四象限,∴点A1的坐标为(,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.7.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠BB.∠APC=∠ACBC.D.【考点】相似三角形的判定.【分析】由图可得∠A=∠A,又由有两角对应相等的三角形相似,即可得A与B正确,又由两边对应成比例且夹角相等的三角形相似,即可得C正确,利用排除法即可求得答案.【解答】解:∵∠A=∠A,∴当∠ACP=∠B时,△ACP∽△ABC,故A选项正确;∴当∠APC=∠ACB时,△ACP∽△ABC,故B选项正确;∴当时,△ACP∽△ABC,故C选项正确;∵若,还需知道∠ACP=∠B,∴不能判定△ACP∽△ABC.故D选项错误.故选:D.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两边对应成比例且夹角相等的三角形相似定理的应用.8.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S