辽宁省抚顺市2016届九年级下第三次质检数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年辽宁省抚顺市九年级(下)第三次质检数学试卷一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠26.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0B.m>0C.mD.m8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=.13.某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是.14.如图是一几何体的三视图,则这个几何体的全面积是.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1=,Sn=(用含n的式子表示).三、解答题(第19题10分,第20题12分,共22分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为;(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.四、21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.五、(本题12分)23.如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)六、(本题12分)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题12分)25.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN(1)线段MN和GD的数量关系是,位置关系是;(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN的最大值和最小值.八、(本题14分)26.如图,直线y=﹣x+3与x轴交于A点,与y轴交于B点,对称轴为x=1的抛物线经过A、B两点,与x轴的另一个交点为C,抛物线与对称轴交于D点,连接CE、CB、BD.(1)求抛物线的解析式;(2)求证:BD∥CE;(3)在直线AB上是否存在点P,使以B、D、P为顶点的三角形与△BCE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.2015-2016学年辽宁省抚顺市房申中学九年级(下)第三次质检数学试卷参考答案与试题解析一、选择题1.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【考点】可能性的大小.【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:=.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据xy实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0B.m>0C.mD.m【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得x1=,x2=,而x1<x2<0时,y1<y2,则2﹣5m<0,然后解不等式即可.【解答】解:∵反比例函数y=的图象上有A(x1,y1)、B(x2,y2),∴x1=,x2=,∵x1<x2<0时,y1<y2,∴2﹣5m<0,∴m>.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°【考点】圆周角定理.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D的度数,又由圆的内接四边形的性质,求得∠ACB的度数.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.注意准确作出辅助线是解此题的关键.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找

1 / 34
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功