山东省聊城市莘县2015~2016学年度八年级上学期期末数学试卷一、选择题:每题3分,共36分.1.下列六个图形中是轴对称图形的有()A.3个B.4个C.5个D.6个2.若分式有意义,则x的取值范围是()A.x≠1B.x>1C.x=1D.x<13.如果方程有增根,那么m的值为()A.1B.2C.3D.无解4.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:颜色黑色棕色白色红色销售量(双)60501015鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A.平均数B.众数C.中位数D.方差5.下列分式中是最简分式的是()A.B.C.D.6.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°7.如图,直线a,b,c表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A.一处B.两处C.三处D.四处8.如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.12cm或15cmD.15cm9.如图,已知△ABC,AB=10,BC边的垂直平分线交AB、BC于点E、D,AC=6,则△ACE的周长是()A.13B.16C.11D.无法确定10.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A.45°B.55°C.60°D.75°11.如图,已知:B是线段AD上的一点,△ABC、△BDE均为等边三角形,AE交BC于P,CD交BE于Q.则下列结论成立的有()(1)AE=CD;(2)BP=BQ;(3)PQ∥AD;(4)CQ=CA;(5)EP=QD.A.5个B.2个C.3个D.4个12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.二、填空题:每题3分,共15分.13.若的值为零,则x的值是.14.直角三角形两锐角平分线相交所成的钝角的度数是.15.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是.16.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.17.观察给定的分式:,猜想并探索规律,那么第n个分式是.三、解答题:共69分.18.化简:(1)(2).19.解方程:(1)(2)=1.20.先化简(),再从0,1,2中选一个合适的值代入求值.21.如图,△ABE为等腰直角三角形,∠ABE=90°,BC=BD,∠FAD=30°.(1)求证:△ABC≌△EBD;(2)求∠AFE的度数.22.已知:如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点坐标;(3)求△ABC的面积.23.某中学准备改造面积为1080m2的旧操场,现有甲、乙两个工程队都想承建这项工程,经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造10m2.求甲乙两个工程队每天各改造操场多少平方米?24.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.25.某中学开展“我爱祖国”演讲比赛活动,九(1),九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)分别求出九(1),九(2)复赛成绩的平均数、方差;(2)结合两班复赛成绩的平均数、方差,分析哪个班级的复赛成绩较稳定;(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,并说理由.山东省聊城市莘县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:每题3分,共36分.1.下列六个图形中是轴对称图形的有()A.3个B.4个C.5个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,3,4,5个图形是轴对称图形,共4个.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若分式有意义,则x的取值范围是()A.x≠1B.x>1C.x=1D.x<1【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不等于0.【解答】解:∵x﹣1≠0,∴x≠1.故选:A.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.3.如果方程有增根,那么m的值为()A.1B.2C.3D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.4.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:颜色黑色棕色白色红色销售量(双)60501015鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【专题】图表型.【分析】对鞋店经理最有意义的是对不同颜色鞋的销售数量.【解答】解:由于众数是数据中出现次数最多的数,鞋店经理最关心的是哪种颜色的鞋最畅销,即这组数据的众数.故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.下列分式中是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.【解答】解:A、分式中,分子和分母有公因式2;B、分式中分子、分母有公因式y﹣x;C、分式中,分子、分母的最大公因式为1;D、分式中,分子、分母有公因式x﹣y.故选C.【点评】中学中的最简分式是小学学习中的最简分数的扩充.最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是否互质,但表面不易判断,应将分子、分母分解因式.6.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.7.如图,直线a,b,c表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A.一处B.两处C.三处D.四处【考点】角平分线的性质.【专题】作图题.【分析】根据题意可作出示意图,利用角平分线定理即可.【解答】解:由题意作图图中小虚线和大虚线分别为所过角的平分线,根据角平分线到两边的距离相等,我们可知图中A、B、C、D四处可供选择站址.故选D.【点评】本题考查了最短路线问题,利用角平分线到两边的距离相等做题解答.8.如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.12cm或15cmD.15cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.如图,已知△ABC,AB=10,BC边的垂直平分线交AB、BC于点E、D,AC=6,则△ACE的周长是()A.13B.16C.11D.无法确定【考点】线段垂直平分线的性质.【专题】计算题.【分析】根据线段垂直平分线的性质得到BE=CE,然后利用三角形周长定义和等线段代换得到△ACE的周长=AB+AC.【解答】解:∵DE垂直平分BC,∴BE=CE,∴△ACE的周长=AE+CE+AC=AE+BE+AC=AB+AC=10+6=16.故选B.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.10.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A.45°B.55°C.60°D.75°【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据条件三角形ABC是正三角形可得:AB=BC,BD=CE,∠ABD=∠C可以判定△ABD≌△BCE,即可得到∠BAD=∠CBE,又知∠APE=∠ABP+∠BAP,故知∠APE=∠ABP+∠CBE=∠B.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABP+∠BAP,∴∠APE=∠ABP+∠CBE=∠B=60°,故选C.【点评】本题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能看出∠APE=∠ABP+∠BAP,还要熟练掌握三角形全等的判定与性质定理.11.如图,已知:B是线段AD上的一点,△ABC、△BDE均为等边三角形,AE交BC于P,CD交BE于Q.则下列结论成立的有()(1)AE=CD;(2)BP=BQ;(3)PQ∥AD;(4)CQ=CA;(5)EP=QD.A.5个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由等边三角形的性质得出AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,证出∠ABE=∠CBD,由SAS证明△ABE≌△CBD,得出AE=CD,(1)正确;由全等三角形的性质得出∠BAP=∠BCQ,证出∠ABC=∠CBQ=60°,由ASA证明△ABP≌△CBQ,得出BP=BQ,(2)正确;由全等三角形的性质得出CQ=AP≠CA,(4)不正确;证明△PBQ是等边三角形,得出∠BPQ=60°=∠ABC,由平行线的判定方法得出PQ∥AD,(3)正确;由AE=CD,AP=CQ,得出EP=QD,(5)正确;即可得出结论.【解答】解:∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,(1)正确;∴∠BAP=∠BCQ,∵∠ABC=∠EBD=60°,∴∠CBQ=180°﹣60°×2=60°,∴∠ABC=∠CBQ=60°,在△ABP与△CBQ中,,∴△ABP≌△CBQ(ASA),∴BP