2017—2018学年度上学期期中学业水平质量调研试题八年级数学2017.11(时间:90分钟总分120分)注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个图案中,轴对称图形的个数是()A.1个B.2个C.3个D.4个2.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cmB.3cmC.17cmD.12cm3.下列图形具有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形4.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10B.11C.13D.11或135.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B=()A.40°B.36°ABCD第6题图C.80°D.25°7.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条8.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°9.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或30°B.75°C.15°D.75°或15°10.如图,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠BDC=()A.120°B.130°C.115°D.110°11.如图,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,...,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米12.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.1[来源:学科网ZXXK]二、填空题(本题1大题,8小题,每小题3分,共24分)13、(1)点P(﹣1,2)关于x轴对称点P1的坐标为(2)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是(3)如图,在△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是第8题图第11题图第12题图第10题图第13(3)题图第13(2)题图(4)已知等腰三角形的周长为20,腰长为x,则x的取值范围是(5)在Rt△ABC中,已知∠C=90°,∠B=60°,BC=3,那么AB=(6)等腰三角形的一个外角等于70°,则它的底角是(7)如图,将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于(8)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是三、解答题(本大题共6小题,共60分)14.(本小题满分9)如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.15.(本小题满分9)如图,在平面直角坐标系中,(1)描出A(-4,3)B(-1,0)C(-2,3)三点.(2)△ABC的面积是(3)作出△ABC关于x轴的对称图形.第14题图第15题图第13(7)题图第13(8)题图16.(本小题满分9分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.[来源:学#科#网][来源:学科网ZXXK]17.(本小题满分10分)[来源:学科网]如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.[来源:Zxxk.Com]18.(本小题满分11分)如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.第16题图第18题图第17题图19.(本小题满分12分)已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,E是AC上一点,连结EB.(1)如图19-1,若点E在线段AC上,过点A作AM⊥BE,垂足为M,交BO于点F.求证:OE=OF;(2)如图19-2,若点E在AC的延长线上,AM⊥BE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.第19-1题图第19-2题图2017—2018学年度上学期期中学业水平质量调研试题八年级数学参考答案2017.11一、选择题(本大题共12小题,每小题3分,共36分)1—5CDCDC6—10BCADC11—12BB二、填空题(本题1大题,8小题,每小题3分,共24分)13(1)(-1,-2)(2)∠ABC=∠ADC或∠A=∠C(只需要一个)(3)6(4)5x10(5)6(6)35°(7)10°(8)30三、解答题(本大题共6小题,共60分)14.(本小题满分9)证明:∵CE∥DA,∴∠A=∠CEB.又∵∠A=∠B,∴∠CEB=∠B.∴CE=CB.∴△CEB是等腰三角形.……………9分15.(本小题满分9)(1)如图所示;……………3分(2)3;……………6分(3)如图所示……………9分16.(本小题满分9分)(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).[来源:学科网]∴AD=CE;……………5分(2)证明:∵△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°……………9分17.(本小题满分10分)解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=9,∠B=30°,∴AD=92,∴DF=92……………10分18.(本小题满分11分)证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.……………11分19.(本小题满分12分)(1)证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF,∴OE=OF;………………………6分(2)OE=OF成立;[来源:学。科。网]证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠F+∠MBF=90°=∠B+∠OBE,又∵∠MBF=∠OBE,∴∠F=∠E,∴Rt△BOE≌Rt△AOF,∴OE=OF………………………12分