六安市苏南中学2013-2014学年上学期第三次月考八年级数学试卷(满分150分,时间120分钟)一.选择题(共10小题,满分40分,每小题4分)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.28.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACFB.△ADEC.△ABCD.△BCF9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.6810.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1B.m﹣2n=1C.2n﹣m=1D.n﹣2m=1二.填空题(共4小题,满分20分,每小题5分)11.如图,AF=DC,BC∥EF,只需补充一个条件_________,就得△ABC≌△DEF.12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是_________(只写一个条件即可).13.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标:_________.14.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为_________①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.三.解答题(共9小题,满分90分)15.(8分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.16.(8分)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.17.(8分)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.18.(8分)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)19.(10分)如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.20.(10分)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.21.(12分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.22.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.23.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE_________CF;EF_________|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).详细解析+考点分析+名师点评一.选择题(共10小题,满分40分,每小题4分)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对考点:全等三角形的判定.766227分析:首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.解答:解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.点评:考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC考点:全等三角形的判定.766227分析:求出AF=CE,再根据全等三角形的判定定理判断即可.解答:解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.点评:本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD考点:全等三角形的判定.766227分析:根据轴对称的性质,对折的两部分是完全重合的,结合图形找出全等的三角形,然后即可得解.解答:解:∵四边形ABCD关于BD所在的直线对称,∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D判断正确;∵AB≠AD,∴△ABC和△ADC不全等,故B判断不正确.故选B.点评:本题考查了全等三角形的判定,根据对折的两部分是完全重合的找出全等的三角形是解题的关键.4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF考点:全等三角形的判定.766227分析:全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.解答:解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.点评:本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个考点:全等三角形的判定.766227分析:根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.解答:解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.点评:此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF考点:直角三角形全等的判定.766227分析:针对选项提供的已知条件,结合直角三角形全等的判定方法对选项逐一验证,其中B虽是两边相等,但不是对应边对应相等,也不能判定三角形全等.解答:解:A、由SAS能判定△ABC和△DEF全等;B、当∠A=∠D=90°时,AC与EF不是对应边,不能判定△ABC和△DEF全等;C、由HL能判定△ABC和△DEF全等;D、由AAS能判定△ABC和△DEF全等.故选B.点评:本题考查了直角三角形全等的判定方法:SSS,ASA,SAS,AAS,HL.做题时要认真验证各选项是否符合全等要求.7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.2考点:直角三角形全等的判定;全等三角形的性质.766227分析:根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.解答:解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,∴∠CAE+∠ACD=∠ACD+∠BCD,∴∠CAE=∠BCD,又∵∠AEC=∠CDB=90°,AC=BC,∴△AEC≌△C