2016-2017学年安徽省六安市裕安区九年级(上)期末数学模拟试卷一、填空题(本大题共10小题,共30分)1.化简:||=.2.将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=.3.在函数中,自变量x的取值范围是.4.半径为1的圆内接正三角形的边心距为.5.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.6.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=.7.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm.8.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.9.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.10.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.等式•=成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≥﹣112.下列四个图形中,不是中心对称图形的是()A.B.C.D.13.下列二次根式中与是同类二次根式的是()A.B.C.D.14.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.B.C.D.15.已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定16.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°17.如图,边长为a的正六边形内有一边长为a的正三角形,则=()A.3B.4C.5D.618.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2D.(π﹣2)cm220.如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次三、计算题(本大题共1小题,共5分)21.(5分)计算:()(5)四、解答题(本大题共6小题,共45分)22.(9分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.23.(7分)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.24.(7分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.(8分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.26.(7分)某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)27.(7分)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.五、综合题(本大题共1小题,共10分)28.(10分)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.2016-2017学年安徽省六安市裕安区九年级(上)期末数学模拟试卷参考答案与试题解析一、填空题(本大题共10小题,共30分)1.化简:||=.【考点】实数的性质.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.2.将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=7.【考点】解一元二次方程-配方法.【分析】移项后配方得出(x﹣2)2=5,即可求出m、n的值,代入m+n求出即可.【解答】解:x2﹣4x﹣1=0,移项得:x2﹣4x=1,配方得:x2﹣4x+4=1+4,(x﹣2)2=5,∴m=2,n=5,∴m+n=5+2=7,故答案为:7.【点评】本题考查了解一元二次方程的方法﹣配方法,解此题的关键是求出m、n的值,题目具有一定的代表性,是一道比较好的题目.3.在函数中,自变量x的取值范围是x≥0且x≠2.【考点】函数自变量的取值范围;零指数幂.【分析】根据被开方数大于等于0,分母不等于0,零指数幂的底数不等于0列式计算即可得解.【解答】解:由题意得,x≥0且x﹣2≠0,x+1≠0,解得x≥0且x≠2,x≠﹣1,所以,x≥0且x≠2.故答案为:x≥0且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.半径为1的圆内接正三角形的边心距为.【考点】正多边形和圆.【分析】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.【解答】解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,OB=1,∴OD=.故答案为:.【点评】考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.5.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=1.【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a+(﹣4)=0且3+b=0,从而得出a,b,推理得出结论.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a+(﹣4)=0,3+b=0,即:a=4且b=﹣3,∴a+b=1.【点评】本题主要考查了平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=10.【考点】根与系数的关系.【分析】利用根与系数的关系确定出原式的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两根,∴x1+x2=2,x1x2=﹣3,则原式=(x1+x2)2﹣2x1x2=4+6=10,故答案为:10【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.7.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为5cm.【考点】垂径定理;勾股定理.【分析】根据垂径定理可将AC的长求出,再根据勾股定理可将⊙O的半径求出.【解答】解:由OC⊥AB,可得AC=BC=AB=4cm,在Rt△ACO中,AC=4,OC=3,由勾股定理可得,AO==5(cm),即⊙O的半径为5cm.故答案为:5.【点评】本题综合考查了圆的垂径定理与勾股定理的运用.垂直弦的直径平分这条弦,并且平分弦所对的两条弧.8.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=62°.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠BCD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.【点评】本题考查的是圆周角定理的应用,掌握直径所对的圆周角是直角、同弧或等弧所对的圆周角相等是解题的关键.9.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为18.【考点】二次函数的性质;等边三角形的性质.【分析】根据抛物线解析式求出对称轴为x=3,再根据抛物线的对称性求出AB的长度,然后根据等边三角形三条边都相等列式求解即可.【解答】解:∵抛物线y=a(x﹣3)2+k的对称轴为x=3,且AB∥x轴,∴AB=2×3=6,∴等边△ABC的周长=3×6=18.故答案为:18.【点评】本题考查了二次函数的性质,等边三角形的周长计算,熟练掌握抛物线的对称轴与两个对称点之间的关系是解题的关键.10.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为.【考点】轨迹.【分析】当正六边形EFGHIJ的边长最大时,要使AE最小,六边形对角线EH与正方形对角线AC重合就可解决问题.【解答】解:如图所示,过点F作FQ⊥CD于点Q,当正六边形对角线EH与正方形对角线AC重合,且六边形与正方形四个边都相切时,六边形的边长最大,此时AE最小,设正六边形的半径、边长为r,则DI=BF=r,在Rt△FIQ中,FQ=1,FI=2r,IQ=1﹣r,由勾股定理可得:FI2=FQ2+IQ2,即:(2r)2=(1﹣r)2+1解得:r=,∵OA=,∴AE=OA﹣r=,则AE的最小值为.故答案为.【点评】本题考查了正多边形的性质与运动的轨迹问题,解决本题的关键是首先找到正六边形的边长最大时正六边形在正方形内的位置,再旋转正六边形使得AE最小.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.等式•=成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≥﹣1【考点】二次根式的乘除法.【分析】依据二次根式乘法法则求解即可.【解答】解:∵•=成立,∴x+1≥0,x﹣1≥0.解得:x≥1.故选:A.【点评】本题主要考查的是二次根式成立的条件,熟练掌握二次根式成立的条件是解题的关键.12.下列四个图形中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、不是中心