南开区2017年3月八年级下《矩形的性质与判定》周测题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

八年级数学下册矩形的性质与判定周练习题一、选择题:1.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.122.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个B.2个C.1个D.0个3.如图,矩形ABCD两条对角线相交于点O,∠AOB=60°,AB=2,则矩形对角线AC长是()A.2B.4C.23D.434.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD﹣DF5.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°6.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形7.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是()A.80cmB.40cmC.20cmD.10cm8.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.0.5B.1C.3.5D.79.如图,□ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cmB.8cmC.10cmD.12cm10.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155°B.170°C.105°D.145°11.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于()A.87.5B.80C.75D.72.512.将一张宽为6的长方形纸片(足够长)折叠成如图所示图形.重叠部分是一个△ABC,则三角形ABC面积的最小值是()A.9B.18C.18D.36二、填空题:13.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.14.如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=1.5cm,则平行四边形ABCD的周长是.15..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______16.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是.18.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.19.如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为.20.如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(3,4),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点C的坐标为.三、解答题:21.如图,□ABCD的对角线相交于点O,EF过点O分别与AD,BC相交于点E,F.(1)求证:△AOE≌△COF;(2)若AB=4,BC=7,OE=3,试求四边形EFCD的周长.22.如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.(1)求证:四边形ABFE是平行四边形;(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.23.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案1.B2.B3.B4.B5.A6.B7.B8.A9.C10.A11.B12.B13.答案为:24.14.答案为:15cm.15.5116.150°17.答案为:60.18.答案为:1.5.19.答案为:6.20.【解答】解:①当DF=DO时,在RT△AOD中,∵AO=3,AD=4,∴OD=5,∴CD=DF=DO=5,∴点C坐标(8,4).②OD=OF时,∵DF=OD=5,OA=3,∴AF=2,DF=CD=2,∴点C坐标(3+2,4).③当FD=FO时,设FD=FO=x,在RT△ADF中,∵AD2+AF2=DF2,∴42+(x﹣3)2=x2,∴x=,∴点C坐标(,4).综上所述,满足条件的点C坐标(8,4)或(3+2,4)或(,4).故答案为(8,4)或(3+2,4)或(,4).21.(1)证明:∵AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,OA=OC,在△AOE和△COF中,,∴△AOE≌△COF.(2)∵△AOE≌△COF∴AE=FC,OF=OE又∵在ABCD中,BC=ADCD=AB∴FC+DE=AE+ED=AD=BC=7∴S四边形EFCD=EF+FC+CD+ED=6+7+4=1722.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.∴∠D=∠BCF.在Rt△ADE和Rt△BCF中,∴Rt△ADE≌Rt△BCF.∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.在Rt△ABE中,AE=3,BE=4,AB=.∵四边形ABFE是平行四边形,∴EF=AB=5.23.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.24.【解答】:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF==10,∴OC=EF=5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功