(满分:150分;考试时间:120分钟)★友情提示:所有答案都必须填在答案卷相应的位置上,答在本试卷上一律无效。一、选择题(本大题共10小题,每小题4分,共40分)1、下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个2、一元二次方程(3)0xx根是()A.123,0xxB.3xC.123,0xxD.3x3、如图,将三角形ABC△绕着点C顺时针旋转35,得到ABC△,AB交AC于点D,若90ADC,则A的度数是()A.35°B.65°C.55°D.25°4、下列的抛物线中,顶点是(1,3)的是()A.y=2(x+1)2+3B.y=﹣2x2+4x+1C.y=2x2+4x﹣3D.y=﹣2x2﹣x+55、关于x的方程024112xxmm是一元二次方程,则m的值为()A.1m-1m21,B.m=1C.m=-1D.无解6、如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数是()A.30°B.45°C.60°D.90°7、⊙1O和⊙2O的半径分别为3cm和4cm,1O2O=7cm,则⊙1O和⊙2O的位置关系是()A.相交B.外切C.内切D.内含8、已知抛物线y=a(x﹣2)2+k(a>0,a,k常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y19、如图,在△PQR是⊙O的内接三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOR=()A.60°B.65°第6题图(第3题)DA'B'CBAARCDPOBQyxOC.72°D.75°10、如图,在平面直角坐标系中,抛物线221xy经过平移得到抛物线xxy2212,其对称轴与两段抛物线所围成的阴影部分的面积是()A.2B.4C.8D.16二、填空题(本大题共8小题,每小题3分,共24分)11、点(2,3)关于原点对称的点的坐标是____________.12、已知m是方程022xx的一个根,则代数式______2mm.13、将抛物线y=x2向上平移1个单位再向右平移2个单位,则平移后的抛物线的顶点坐标为14、若关于x的方程0122xmx没有实数根,则m的取值范围是_____________.15、如图所示,ABC△内接于,,30ABC,则CAD______.16、如果圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则该圆锥的全面积为.17、如图,使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为12AAA,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长是18、抛物线2yaxbxc上部分点的坐标对应值如下表:x…-2-1012…y…04664…从上表可知,下列说法中正确的是.(填写序号)①函数2yaxbxc的最大值为6;②抛物线与x轴的一个交点为(3,0);③在对称轴右侧,y随x增大而减小;④抛物线的对称轴是直线12x;⑤抛物线开口向上.三、解答题(本大题共8题,共86分)19、(本题满分8分)计算:|-1|+128+(-3.14)0-(12)-1.20、(本题14分)用适当的方法解方程:(1)2x-2x-1=0(2))2(5)2(3xxx21(本题满分8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A顺时针方向旋转90°得到△AB′C′(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22、(10分)在一幅长8分米,宽6分米的矩形风景画的四周镶上宽度相同的金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是80平方分米,求金色纸边的宽.23、(本题满分10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.24、(本题满分10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)风景画25、(本题满分12分)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数.(2)如图②,在Rt△ABD中,90BAD,ADAB,点M,N是BD边上的任意两点,且45MAN,将△ABM绕点A逆时针旋转90至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若4EG,6GF,23BM,求AG,MN的长.26、(14分)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线x=l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线x=l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线x=l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.ABCFDEG(图①)ADBMNH(图②)南平九中教研片2014~2015学年上期九年级第一次质量检测数学试题答案20、(本题14分,每小题7分)用适当的方法解方程:(1)2x-2x-1=0(2))2(5)2(3xxx解:122xx解:0)2(5)2(3xxx11122xx0)53)(2(xx2)1(2x∴02x或053x21x或21x∴21x,352x∴21,2121xx21、(本题8分)解:(1)如图所示:△AB′C′即为所求;………………………………4分(2)∵AB==5,………………………………5分∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.……8分22、解:设金色纸边的宽为x分米………………………………1分根据题意得:(8+2x)(6+2x)=80………………………4分0872xx0)1)(8(xx…………………………8分解得81x(舍去),12x…………………9分答:金色纸边的宽为1分米。……………………10分23、(本题满分10分)(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;……………………5分(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,设BC=x,则AB=x2,由勾股定理得222)34()2(xx解得4x∴AB=2BC=8,∴⊙O的半径为4.……………………10分24、(本题满分10分)解:(1)y=(x﹣50)[50+5(100﹣x)]···························································2分=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);······························································3分(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500···············································································4分∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,·····························································5分∴当x=80时,y最大值=4500;·····································································6分(3)当y=4000时,﹣5(x﹣80)2+4500=4000,··········································7分解得x1=70,x2=90.················································································8分∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.···························································································9分∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.················································10分25.(本题满分12分)(1)在Rt△ABE和Rt△AGE中,AGAB,AEAE,∴△ABE≌△AGE.∴GAEBAE.···············································1分同理,DAFGAF.∴4521BADEAF.······································································2分(2)222DHNDMN.······································································3分∵DAHBAM,45DANBAM,∴45DANDAHHAN.∴MANHAN.又∵AHAM,ANAN,∴△AMN≌△AHN.∴HNMN.……………6分∵90BAD,ADAB,∴45ADBABD.∴90ADBHDAHDN.∴222DHNDNH.∴222DHNDMN.………………………………8分ABCFDEG(图①)MN(3)由(1)知,EGBE,FGDF.设xAG,则4xCE,6xCF.∵222EFCFCE,∴22210)6()4(xx.解这个方程,得121x,22x(舍去负根).∴12AG.······························································································10分∴2122222AGADABBD.在(2)中,222DHNDMN,DHBM,∴222BMNDMN.··············································································11分设aMN,则222)2