2016-2017学年江西省上饶市鄱阳县湖城学校八年级(上)期中数学试卷一、选择题(共6小题,每小题3分,满分18分)1.三角形的内角和等于()A.90°B.180°C.300°D.360°2.下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④3.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D4.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是()A.10cmB.15cmC.20cmD.25cm5.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个6.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题(共6小题,每小题3分,满分18分)7.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.8.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是.9.如图,在矩形ABCD中,点P在AB上,且PC平分∠ACB.若PB=3,AC=10,则△PAC的面积为.10.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是.11.三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是.12.当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为.三、解答题(共5小题,满分30分)13.一个零件的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?14.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.15.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.16.如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.17.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.四、解答题(共4小题,满分32分)18.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.19.填写下列空格,完成证明.已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠3=∠F证明:因为AD是△ABC的角平分线(已知)所以∠1=∠2()因为EF∥AD(已知)所以∠3=∠()∠F=∠()所以∠3=∠F().20.如图,OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,连接DE,猜想DE与OC的位置关系?并说明理由.21.如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.五、解答题(共1小题,满分10分)22.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.六、解答题(共1小题,满分12分)23.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)2016-2017学年江西省上饶市鄱阳县湖城学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.三角形的内角和等于()A.90°B.180°C.300°D.360°【考点】三角形内角和定理.【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题【解答】解:因为三角形的内角和为180度.所以B正确.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.2.下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线的定义与性质判断①与②;根据三角形的高的定义及性质判断③;根据三角形的中线的定义及性质判断④即可.【解答】解:①三角形的角平分线是线段,说法错误;②三角形的三条角平分线都在三角形内部,且交于同一点,说法正确;③锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;④三角形的一条中线把该三角形分成面积相等的两部分,说法正确.故选D.【点评】本题考查了三角形的角平分线、中线和高的定义及性质,是基础题.从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DEF,有AC=DF,BC=EF,可以加∠ACB=∠F,就可以用SAS判定△ABC≌△DEF.【解答】解:A,添加∠A=∠D,满足SSA,不能判定△ABC≌△DEF;B,添加∠ACB=∠F,满足SAS,能判定△ABC≌△DEF;C,添加∠B=∠DEF,满足SSA,不能判定△ABC≌△DEF;D,添加∠ACB=∠D,两角不是对应角,不能判定△ABC≌△DEF;故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时,要结合已知与图形对选项逐个验证.4.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是()A.10cmB.15cmC.20cmD.25cm【考点】角平分线的性质.【分析】过点M作MN⊥AB于N,根据角平分线上的点到角的两边的距离相等可得MN=CM,从而得解.【解答】解:如图,过点M作MN⊥AB于N,∵∠C=90°,AM平分∠CAB,∴MN=CM,∵CM=20cm,∴MN=20cm,即M到AB的距离是20cm.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,点到直线的距离,熟记性质并作出辅助线是解题的关键.5.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,3个图形是轴对称图形,共3个.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4【考点】角平分线的性质;线段垂直平分线的性质;作图—基本作图.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题(共6小题,每小题3分,满分18分)7.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=240°.【考点】多边形内角与外角;三角形内角和定理.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.8.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是∠A=∠C,∠B=∠D,OD=OB,AB∥CD.【考点】全等三角形的判定.【专题】开放型.【分析】本题要判定△OAB≌△OCD,已知OA=OC,∠AOB=∠COD,具备了一组边对应相等和一组角对应相等,故添加∠A=∠C,∠B=∠D,OD=OB,AB∥CD后可分别根据ASA、AAS、SAS、AAS判定△OAB≌△OCD.【解答】解:∵OA=OC,∠A=∠C,∠AOB=∠COD,∴△OAB≌△OCD(ASA).∵OA=OC,∠B=∠D,∠AOB=∠COD,∴△OAB≌△OCD(AAS).∵OA=OC,OD=OB,∠AOB=∠COD,∴△OAB≌△OCD(SAS).∵AB∥CD,∴∠A=∠C,∠B=∠D(两直线平