2016-2017学年河北省秦皇岛市抚宁学区九年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中是一元二次方程的是()A.xy+2=1B.C.x2=0D.ax2+bx+c=02.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为()A.B.8C.10D.163.已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为()A.2cmB.14cmC.2cm或14cmD.10cm或20cm4.粮仓顶部是圆锥形,这个圆锥的底面直径为4m,母线长为3m,为防雨需在仓顶部铺上油毡,这块油毡面积是()A.6m2B.6πm2C.12m2D.12πm25.若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定6.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.7.抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线为()A.y=3(x+3)2﹣2B.y=3(x+3)2+2C.y=3(x﹣3)2﹣2D.y=3(x﹣3)2+28.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m9.已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2﹣2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根10.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1B.C.3D.11.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5B.7C.8D.1012.如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依次A、B、C、D、E、F、C、G、A这8段路径上不断爬行,直到行走2006πcm后才停下来,则蚂蚁停的那一个点为()A.D点B.E点C.F点D.G点二、填空题(本大题共6个小题,每小题3分,共18分)13.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.14.反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是.15.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.16.如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是.17.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.18.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=.三、解答题(本大题共8个小题,共66分)19.已知a是锐角,且sin(a+15°)=,计算﹣4cosα﹣(π﹣3.14)0+tanα+的值.20.已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.21.某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.(1)为了实现平均每月10000元的销售利润,商场决定采取调控价格的措施,扩大销售量,减少库存,这种台灯的售价应定为多少?这时应进台灯多少个?(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多少个?22.甲转盘的三个等分区域分别写有数字1、2、3,乙转盘的四个等分区域分别写有数字4、5、6、7.现分别转动两个转盘,通过画树形图或者列表法求指针所指数字之和为偶数的概率.23.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).24.如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD、AB的长是方程x2﹣10x+24=0的两个根,求直角边BC的长.25.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.2016-2017学年河北省秦皇岛市抚宁学区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中是一元二次方程的是()A.xy+2=1B.C.x2=0D.ax2+bx+c=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:含有两个未知数,并且所含未知数的项的次数是2次得整式方程,即可判断答案.【解答】解:根据一元二次方程的定义:A、是二元二次方程,故本选项错误;B、是分式方程,不是整式方程,故本选项错误;C、是一元二次方程,故本选项正确;D、当abc是常数,a≠0时,方程才是一元二次方程,故本选项错误;故选C.2.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为()A.B.8C.10D.16【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由DE:EA=2:3得DE:DA=2:5,根据EF∥AB,可证△DEF∽△DAB,已知EF=4,利用相似比可求AB,由平行四边形的性质CD=AB求解.【解答】解:∵DE:EA=2:3,∴DE:DA=2:5,又∵EF∥AB,∴△DEF∽△DAB,∴=,即=,解得AB=10,由平行四边形的性质,得CD=AB=10.故选C.3.已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为()A.2cmB.14cmC.2cm或14cmD.10cm或20cm【考点】垂径定理;勾股定理.【分析】本题要分类讨论:(1)AB,CD在圆心的同侧如图(一);(2)AB,CD在圆心的异侧如图(二).根据勾股定理和垂径定理求解.【解答】解:(1)AB,CD在圆心的同侧如图(一),连接OD,OB,过O作AB的垂线交CD、AB于E,F,根据垂径定理得ED=CD=×16=8cm,FB=AB=×12=6cm,在Rt△OED中,OD=10cm,ED=8cm,由勾股定理得OE===6(cm),在Rt△OFB中,OB=10cm,FB=6cm,则OF===8(cm),AB和CD的距离是OF﹣OE=8﹣6=2(cm);(2)AB,CD在圆心的异侧如图(二),连接OD,OB,过O作AB的垂线交CD、AB于E,F,根据垂径定理得ED=CD=×16=8cm,FB=AB=×12=6cm,在Rt△OED中,OD=10cm,ED=8cm,由勾股定理得OE===6(cm),在Rt△OFB中,OB=10cm,FB=6cm,则OF===8(cm),AB和CD的距离是OF+OE=6+8=14(cm),AB和CD的距离是2cm或14cm.故选C.4.粮仓顶部是圆锥形,这个圆锥的底面直径为4m,母线长为3m,为防雨需在仓顶部铺上油毡,这块油毡面积是()A.6m2B.6πm2C.12m2D.12πm2【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为4m,则底面周长=4π,油毡面积=×4π×3=6πm2,故选B.5.若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定【考点】反比例函数的性质;反比例函数的定义.【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:∵y=(2m﹣1)是反比例函数,∴,解之得m=±1.又因为图象在第二,四象限,所以2m﹣1<0,解得m<,即m的值是﹣1.故选C.6.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.【考点】概率公式.【分析】只需找到第三次翻牌时的所有情况和获奖的情况,即可求得概率.【解答】解:根据题意,得全部还有18个商标牌,其中还有4个中奖,所以第三次翻牌获奖的概率是.故选B.7.抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线为()A.y=3(x+3)2﹣2B.y=3(x+3)2+2C.y=3(x﹣3)2﹣2D.y=3(x﹣3)2+2【考点】二次函数图象与几何变换.【分析】先得到抛物线y=3x2的顶点坐标为(0,0),然后分别确定每次平移后得顶点坐标,再根据顶点式写出最后抛物线的解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0),抛物线y=3x2向上平移2个单位,再向右平移3个单位后顶点坐标为(3,2),此时解析式为y=3(x﹣3)2+2.故选:D.8.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m【考点】相似三角形的应用.【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高x米,则=,∴解得:x=8.故选;C.9.已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2﹣2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根【考点】根与系数的关系;根的判别式;反比例函数的图象.【分析】本题是对反比例函数的图象性质,一元二次方程的根的判别式以及根与系数的关系的综合考查,可以根据反比例函数的图象性质判断出ab的符号,从而得出解的个数,然后利用根与系数的关系求出两个根的符号关系.【解答】解:因为反比例函数y=,当x>0时,y随x的增大而增大,所以ab<0,所以△=4﹣4ab>0,所以方程有两个实数根,再根据x1x2=<0,故方程有一个正根和一个负根.故选C.10.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1B.C.3D.【考点】圆周角定理;解直角三角形.【分析】由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.【解答】解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B=,∴=,∴AC=.故选:D.11.如图,P为⊙