数学人教版八年级上第十一章三角形单元检测姓名班级组号一、选择题(本大题共9小题,每小题3分,共27分.)1.以下列各组线段为边,能组成三角形的是().A.1cm,2cm,3cmB.2cm,5cm,8cmC.4cm,5cm,10cmD.3cm,4cm,5cm2.下面四个图形中,线段BE是△ABC的高的图是().3.下列说法错误的是().A.任意三角形都有三条高线、三条中线、三条角平分线B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点4.四边形没有稳定性,当四边形形状改变时,发生变化的是().A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.一个多边形的内角和是外角和的3倍,则这个多边形是几边形?().A.三角形B.四边形C.五边形D.六边形6.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为().A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是().A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长x(cm)的范围是__________.11.等腰三角形的周长为20cm,一边长为6cm,则底边长为________________.12.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.13.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.14.如图ABC中,AD是BC上的中线,BE是ABD中AD边上的中线,若ABC的面积是24,则ABE的面积是________。15.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分7分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?第2题图第15题图第16题图第17题图第18题图第8题图31ABCDE第14题图20.(本题满分7分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.21.(本题满分7分)已知:如图,∠B=42°,∠A+10°=∠1,∠ACD=64°求证:AB∥CD。22.(本题满分7分)如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数。23.(本题满分8分)如图1,△ABC中,AD⊥BC,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE的度数。24.(本题满分9分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF吗?试说明理由.ABCD1264421DCAB参考答案1.D点拨:只有D中较短两边之和大于第三边,能组成三角形.2.C点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8cm或6cm点拨:当腰长是6cm时,根据周长20cm求得底边长是8cm,能组成三角形;当底边长是6cm时,求得腰长是7cm,也能组成三角形,两种情况都成立,所以底边长是8cm或6cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2(3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.