③②①人教版八年级数学上学期期中复习提优测试题精选(全卷总分120分)姓名得分一、选择题(每小题3分,共30分)1.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°2.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°3.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.110°B.140°C.220°D.70°4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②5.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是()A.BD=CEB.∠ABD=∠ACEC.∠BAD=∠CAED.∠BAC=∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cmB.2cmC.3cmD.4cm8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1B.3n+2C.4n+2D.4n-2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.如图,一副三角板AOC和BCD如图摆放,则∠AOB=.13.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=.15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=.三、解答题(共72分)17.(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.18.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E.19.(12分)问题引入:(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);如图2,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,第1题第2题第3题第4题第5题第7题第8题第9题第16题第14题第15题第12题第13题第11题第18题则∠BOC=(用α表示);拓展研究:(2)如图3,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=(用α表示),并说明理由;(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=.20.(10分)如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN.求证:(1)△ACM≌△DCN;(2)MN∥AB.21.(9分)(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.22.(10分)如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.23.(10分)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求AD的长.24.(9分)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AEDB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.第22题第19题第23题第20题第21题第24题③②①人教版八年级数学上学期期中复习提优测试题精选参考答案一、选择题(每小题3分,共30分)1.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是(A)A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°2.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于(C)A.120°B.115°C.110°D.105°3.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=(B)A.110°B.140°C.220°D.70°4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带(C)A.①B.②C.③D.①和②5.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是(B)A.BD=CEB.∠ABD=∠ACEC.∠BAD=∠CAED.∠BAC=∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是(D)7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为(C)A.1cmB.2cmC.3cmD.4cm8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8B.6C.4D.29.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(A)A.15°B.17.5°C.20°D.22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为(C)(用含n的代数式表示).A.2n+1B.3n+2C.4n+2D.4n-2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.12.如图,一副三角板AOC和BCD如图摆放,则∠AOB=165°.13.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=69°.14.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=6cm或12cm.15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=5.16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=8.三、解答题(共72分)17.(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.解:所补画的图形如图所示.18.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E.解:∵∠1=∠A+∠E,∠2=∠B+∠C,∴∠A+∠B+∠C+∠D+∠E=∠1+∠2+∠D=180°.第1题第2题第3题第4题第5题第7题第8题第9题第18题第11题第12题第13题第14题第15题第16题19.(12分)问题引入:(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=90°+12∠α(用α表示);如图2,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=120°+13∠α(用α表示);拓展研究:(2)如图3,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=120°-13∠α(用α表示),并说明理由;(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=(n-1)·180°-∠αn.解:理由:∵∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,∴∠BOC=180°-13(∠DBC+∠ECB)=180°-13[360°-(∠ABC+∠ACB)]=180°-13[360°-(180°-∠A)]=180°-13(180°+∠α)=180°-60°-13∠α=120°-13∠α.20.(10分)如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN.求证:(1)△ACM≌△DCN;(2)MN∥AB.证明:(1)∵△ACD和△BCE都是等边三角形,∴AC=DC,BC=EC,∠ACD=∠BCE=60°.∵∠ACD+∠DCE+∠ECB=180°,∴∠DCE=60°.∴∠ACE=∠DCB=120°.在△ACE和△DCB中,AC=DC,∠ACE=∠DCB,CE=CB,∴△ACE≌△DCB(SAS).∴∠EAC=∠BDC.在△ACM和△DCN中,∠MAC=∠NDC,AC=DC,∠ACM=∠DCN=60°,∴△ACM≌△DCN(ASA).(2)由(1)知△ACM≌△DCN,∴CM=CN.又∵∠MCN=60°,∴△CNM为等边三角形,∠NMC=60°.∴∠NMC=∠ACM=60°.∴MN∥AB.21.(9分)(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是2<AD<8;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,第21题第20题DF交AC于点F,连接EF,求证BE+CF>EF.证明:延长FD至点G,使DG=DF,连接BG,EG.∵点D是BC的中点,∴DB=DC.∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS).∴BG=CF.∵ED⊥FD,∴∠EDF=∠EDG=90°.又∵ED=ED,FD=DG,∴△ED