第20章数据的分析单元检测姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40B.42C.38D.22.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6B.2.32C.23.2D.11.53.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A.4B.6C.5D.4和64.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为()A.81,82B.83,81C.81,81D.83,825.2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31B.中位数是30C.平均数是32D.极差是56.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法对比7.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差8.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆9.济南园博园对2016年国庆黄金周七天假期的游客人数进行了统计,如表:日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日旅游人数(万)1.52.22.23.81.52.20.6其中平均数和中位数分别是()A.2和2.2B.2和2C.1.5和2.2D.2.2和3.810.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.811.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.0方差3.290.491.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁二.填空题(本大题共6小题,每小题4分,共24分)13.某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下:9.38.99.29.59.29.79.4按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是分.14.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,则小丽的总平均分是,小明的总平均分是.学生作业测验期中考试期末考试小丽80757188小明7680689015.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是.16.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.17.已知一组数据1,,x,,﹣1的平均数为1,则这组数据的极差是.18.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).三.解答题(共8小题)19.已知数x1,x2,…xn的平均数是,求(x1﹣)+(x2﹣)+…(xn﹣)20.在某一中学田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩(米)1.501.601.651.701.751.801.851.90人数23234111分别求这些运动员成绩的中位数和平均数(结果保留到小数点后第2位).21.某公司招聘一名员工,对甲、乙、丙三名应聘者进行三项素质测试,各项测试成绩如下表:测试项目测试成绩甲乙丙创新897综合知识577语言957(1)如果根据三项成绩的平均分确定录用人选,那么应该选谁?为什么?(2)根据实际需要,公司将创新、综合知识和语言三项得分按3:2:1的比例确定最终人选,那么如何确定人选?为什么?22.公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);(2)假设销售部把每位销售人员的月销售定额规定为320件,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.23.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g)737475767778甲的数量244311乙的数量236211根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?24.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;(4)根据中位数来判断两人的成绩谁优谁次;(5)根据方差来判断两人的成绩谁更稳定.25.城东中学七年级举行跳绳比赛,要求与每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在甲、乙两班中产生,如表是这两个班的5名学生的比赛数据(单位:次)1号2号3号4号5号平均次数方差甲班15014816013915315046.8乙班139150145169147a103.2根据以上信息,解答下列问题:(1)写出表中a的值和甲、乙两班的优秀率;(2)写出两班比赛数据的中位数;(3)你认为冠军奖应发给那个班?简要说明理由.26.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=,b=,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?参考答案与试题解析一.选择题1.分析:根据所有数据均减去40后平均数也减去40,从而得出答案.解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.2.分析:根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.解:根据平均数的求法:共(8+12)=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=11.6.故选A.3.分析:要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数的平均数.解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,则这组数据的中位数是5.故选C.4.分析:根据众数与中位数的定义分别进行解答即可.解:∵81出现了3次,出现的次数最多,∴这组数据的众数是81,把这组数据从小到大排列为72,77,79,81,81,81,83,83,85,89,最中间两个数的平均数是:(81+81)÷2=81,则这组数据的中位数是81;故选C.5.分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、35,位于中间位置的数是31,故B符合要求;平均数为(30+31+31+31+33+33+35)÷7=32,故C不符合要求;极差为35﹣30=5,故D不符合要求.故选B.6.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.7.分析:9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选C.8.分析:根据加权平均数的求法可以求得这30天在该时段通过该路口的汽车平均辆数,本题得以解决.解:由题意可得,这30天在该时段通过该路口的汽车平均辆数是:=770,故选C.9.分析:根据平均数和中位数的定义解答可得.解:平均数为=2,数据重新排列为:0.6、1.5、1.5、2.2、2.2、2.2、3.8,∴中位数为2.2,故选:A.10.分析:根据众数、平均数和中位数的概念求解.解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.11.分析:根据极差、中位数、众数和加权平均数的定义计算可得.解:根据射击成绩知极差是10﹣6=4环,故A错误;中位数是=8环,故B正确;众数是9环,故C错误;平均数为=8环,故D错误;故选:B.12.分析:根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.二.填空题(共6小题)13.分析:只要运用求平均数公式即可求出,为简单题.解:1号选手(9.3+9.2+9.5+9.2+9.4)÷5=9.32分.故答案为:9.32.14.分析:把不同的成绩分别乘以对应的权重后求和再除以权的和即可.解:小丽:80×10%+75×30%+71×25%+88